1.Combination of Components from Tripterygii Radix et Rhizoma-Chuanxiong Rhizoma Affects RA-FLSs by Regulating NF-κB, Nrf2/HO-1 Signaling Pathways and Bcl-2/Caspase-3 Expression
Yongmei GUAN ; Zhiyan WAN ; Shuhui WANG ; Weifeng ZHU ; Zhiyong LIU ; Cheng JIANG ; Zhenzhong ZANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):17-26
ObjectiveTo investigate the effects of the combination of components from Tripterygii Radix et Rhizoma and Chuanxiong Rhizoma on rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs) and the underlying mechanism. MethodsRA-FLSs were grouped as follows: blank control, positive control (methotrexate), Tripterygii Radix et Rhizoma components, Chuanxiong Rhizoma components, and components from Tripterygii Radix et Rhizoma+Chuanxiong Rhizoma. The cell-counting kit-8 (CCK-8) assay was employed to the cell proliferation, invasion, and apoptosis. The levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, reactive oxygen species (ROS), and malondiadehyde (MDA) in cells were measured. Western blot was employed to determine the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), nuclear factor-kappa B (NF-κB) p65, phosphorylated inhibitory subunit of NF-κBα (p-IκBα), cysteinyl aspartate-specific protease-3 (Caspase-3), and B-cell lymphoma 2 (Bcl-2). Real-time PCR was employed to determine the mRNA levels of Nrf2, HO-1, and NF-κB p65. ResultsThe cells in the groups of positive control, Tripterygii Radix et Rhizoma components, Chuanxiong Rhizoma components, and components from Tripterygii Radix et Rhizoma+Chuanxiong Rhizoma were treated with 2.50 mg·L-1 methotrexate, 0.20 mg·L-1 triptolide + 0.20 mg·L-1 celastrol, 5.00 mg·L-1 ferulic acid + 20.00 mg·L-1 ligustrazine, 0.20 mg·L-1 triptolide + 0.20 mg·L-1 celastrol + 5.00 mg·L-1 ferulic acid + 20.00 mg·L-1 ligustrazine, respectively. Compared with the blank control group, drug administration reduced the proliferation and invasion and increased the apoptosis of cells (P<0.01), lowered the levels of TNF-α, IL-6, ROS, and MDA (P<0.01), up-regulated the mRNA and protein levels of Caspase-3, Nrf2, and HO-1 (P<0.01), and down-regulated the mRNA and protein levels of Bcl-2, NF-κB p65, and p-IκBα (P<0.01). Compared with the Tripterygii Radix et Rhizoma components group, the combination of components from Tripterygii Radix et Rhizoma+Chuanxiong Rhizoma inhibited the proliferation and invasion (P<0.05) and promoted the apoptosis of RA-FLSs, up-regulated the mRNA levels of Nrf2 and HO-1 and protein levels of Nrf2 and Caspase-3 (P<0.05), and down-regulated the protein levels of NF-κB p65 and p-IκBα (P<0.05). ConclusionThe combination of components from Chuanxiong Rhizoma and Tripterygii Radix et Rhizoma can inhibit the proliferation and invasion and promote the apoptosis of RA-FLSs and alleviate oxidative stress and inflammation by inhibiting the NF-κB signaling pathway, activating the Nrf2/HO-1 pathway, and regulating the expression of Bcl-2/Caspase-3.
2.Exploration of legal regulations of investigator-initiated trials
Hongjing WANG ; Shuhui SUN ; Yumei XU ; Jiyin ZHOU
Chinese Medical Ethics 2025;38(10):1306-1314
The investigator-initiated trials (IIT), as a widely existing form of clinical research both domestically and internationally, have attracted the attention of governments around the world due to the potential legal risks and issues they may cause, and the trend of legal supervision has gradually strengthened. The legal regulation of IIT in China is still in its early stages, with numerous legal issues that need to be clarified and sorted out. Based on the domestic and international legal reviews of IIT, this paper systematically sorted out the current situation of legal supervision of IIT in China and examined the existing issues, including weak legislative rules, incomplete regulatory systems, imperfect protection rules for research participants and informed consent systems, inadequate regulation of conflicts of interest management, and lax legal supervision of ethical review. Furthermore, this paper proposed suggestions for legal regulation of IIT from three perspectives, including strengthening legislation and emphasizing regulation, improving the mechanism for protecting research participants’ rights and interests, and balancing the legalization of IIT and the scientific development of clinical research, with a view to providing references for legal regulatory paths of IIT in China.
3.Full-size diffusion model for adaptive feature medical image fusion.
Jing DI ; Shuhui SHI ; Heran WANG ; Chan LIANG ; Yunlong ZHU
Journal of Biomedical Engineering 2025;42(5):871-882
To address issues such as loss of detailed information, blurred target boundaries, and unclear structural hierarchy in medical image fusion, this paper proposes an adaptive feature medical image fusion network based on a full-scale diffusion model. First, a region-level feature map is generated using a kernel-based saliency map to enhance local features and boundary details. Then, a full-scale diffusion feature extraction network is employed for global feature extraction, alongside a multi-scale denoising U-shaped network designed to fully capture cross-layer information. A multi-scale feature integration module is introduced to reinforce texture details and structural information extracted by the encoder. Finally, an adaptive fusion scheme is applied to progressively fuse region-level features, global features, and source images layer by layer, enhancing the preservation of detail information. To validate the effectiveness of the proposed method, this paper validates the proposed model on the publicly available Harvard dataset and an abdominal dataset. By comparing with nine other representative image fusion methods, the proposed approach achieved improvements across seven evaluation metrics. The results demonstrate that the proposed method effectively extracts both global and local features of medical images, enhances texture details and target boundary clarity, and generates fusion image with high contrast and rich information, providing more reliable support for subsequent clinical diagnosis.
Humans
;
Image Processing, Computer-Assisted/methods*
;
Algorithms
;
Neural Networks, Computer
;
Diagnostic Imaging/methods*
;
Image Interpretation, Computer-Assisted/methods*
4.Discovery of Yersinia LcrV as a novel biased agonist of formyl peptide receptor 1 to bi-directionally modulate intracellular kinases in triple-negative breast cancer.
Yunjun GE ; Huiwen GUAN ; Ting LI ; Jie WANG ; Liang YING ; Shuhui GUO ; Jinjian LU ; Richard D YE ; Guosheng WU
Acta Pharmaceutica Sinica B 2025;15(7):3646-3662
G protein-coupled receptors (GPCRs) are significant drug targets, but their potential in cancer therapy remains underexplored. Conventional GPCR agonists or antagonists have shown limited effectiveness in cancer treatment, necessitating new GPCR-targeting strategies for more effective therapies. This study discovers that Yersinia pestis LcrV, a crucial linker protein for plague infection, acts as a biased agonist of a GPCR, the formyl peptide receptor 1 (FPR1). The LcrV protein induces unique conformational changes in FPR1, resulting in G proteins being activated in a distinctive state without subunit dissociation. This leads to a biased signaling profile characterized by cyclic adenosine monophosphate (cAMP) responses and β-arrestin2 recruitment, but not calcium mobilization. In FPR1-expressing triple-negative breast cancer (TNBC) cells, LcrV bi-directionally modulates intracellular signaling pathways, downregulating extracellular signal-regulated kinases (ERK1/2) and Akt pathways while upregulating Jun N-terminal kinase (JNK) and p38 pathways. This dual modulation results in cell cycle arrest and the inhibition of TNBC cell proliferation. In TNBC xenograft mouse models, long-term LcrV treatment inhibits tumor growth more effectively than a conventional FPR1 antagonist. Additionally, LcrV treatment reprograms tumor cells by reducing stemness-associated proteins OCT4 and c-MYC. Our findings highlight the potential of biased GPCR agonists as a novel GPCR-targeting strategy for cancer treatment.
6.Targeting 5-HT to Alleviate Dose-Limiting Neurotoxicity in Nab-Paclitaxel-Based Chemotherapy.
Shuangyue PAN ; Yu CAI ; Ronghui LIU ; Shuting JIANG ; Hongyang ZHAO ; Jiahong JIANG ; Zhen LIN ; Qian LIU ; Hongrui LU ; Shuhui LIANG ; Weijiao FAN ; Xiaochen CHEN ; Yejing WU ; Fangqian WANG ; Zheling CHEN ; Ronggui HU ; Liu YANG
Neuroscience Bulletin 2025;41(7):1229-1245
Chemotherapy-induced peripheral neurotoxicity (CIPN) is a severe dose-limiting adverse event of chemotherapy. Presently, the mechanism underlying the induction of CIPN remains unclear, and no effective treatment is available. In this study, through metabolomics analyses, we found that nab-paclitaxel therapy markedly increased serum serotonin [5-hydroxtryptamine (5-HT)] levels in both cancer patients and mice compared to the respective controls. Furthermore, nab-paclitaxel-treated enterochromaffin (EC) cells showed increased 5-HT synthesis, and serotonin-treated Schwann cells showed damage, as indicated by the activation of CREB3L3/MMP3/FAS signaling. Venlafaxine, an inhibitor of serotonin and norepinephrine reuptake, was found to protect against nerve injury by suppressing the activation of CREB3L3/MMP3/FAS signaling in Schwann cells. Remarkably, venlafaxine was found to significantly alleviate nab-paclitaxel-induced CIPN in patients without affecting the clinical efficacy of chemotherapy. In summary, our study reveals that EC cell-derived 5-HT plays a critical role in nab-paclitaxel-related neurotoxic lesions, and venlafaxine co-administration represents a novel approach to treating chronic cumulative neurotoxicity commonly reported in nab-paclitaxel-based chemotherapy.
Paclitaxel/toxicity*
;
Animals
;
Albumins/adverse effects*
;
Serotonin/metabolism*
;
Mice
;
Humans
;
Male
;
Female
;
Venlafaxine Hydrochloride/therapeutic use*
;
Neurotoxicity Syndromes/metabolism*
;
Middle Aged
;
Schwann Cells/metabolism*
;
Peripheral Nervous System Diseases/drug therapy*
;
Antineoplastic Agents
8.FOXO3-engineered human mesenchymal stem cells efficiently enhance post-ischemic stroke functional rehabilitation.
Fangshuo ZHENG ; Jinghui LEI ; Zan HE ; Taixin NING ; Shuhui SUN ; Yusheng CAI ; Qian ZHAO ; Shuai MA ; Weiqi ZHANG ; Jing QU ; Guang-Hui LIU ; Si WANG
Protein & Cell 2025;16(5):365-373
9.Single-nucleus transcriptomics decodes the link between aging and lumbar disc herniation.
Min WANG ; Zan HE ; Anqi WANG ; Shuhui SUN ; Jiaming LI ; Feifei LIU ; Chunde LI ; Chengxian YANG ; Jinghui LEI ; Yan YU ; Shuai MA ; Si WANG ; Weiqi ZHANG ; Zhengrong YU ; Guang-Hui LIU ; Jing QU
Protein & Cell 2025;16(8):667-684
Lumbar disc (LD) herniation and aging are prevalent conditions that can result in substantial morbidity. This study aimed to clarify the mechanisms connecting the LD aging and herniation, particularly focusing on cellular senescence and molecular alterations in the nucleus pulposus (NP). We performed a detailed analysis of NP samples from a diverse cohort, including individuals of varying ages and those with diagnosed LD herniation. Our methodology combined histological assessments with single-nucleus RNA sequencing to identify phenotypic and molecular changes related to NP aging and herniation. We discovered that cellular senescence and a decrease in nucleus pulposus progenitor cells (NPPCs) are central to both processes. Additionally, we found an age-related increase in NFAT1 expression that promotes NPPC senescence and contributes to both aging and herniation of LD. This research offers fresh insights into LD aging and its associated pathologies, potentially guiding the development of new therapeutic strategies to target the root causes of LD herniation and aging.
Intervertebral Disc Displacement/metabolism*
;
Humans
;
Aging/pathology*
;
Nucleus Pulposus/pathology*
;
Male
;
Female
;
Transcriptome
;
Middle Aged
;
Lumbar Vertebrae/pathology*
;
Adult
;
Cellular Senescence
;
Stem Cells/pathology*
;
Aged
;
Intervertebral Disc Degeneration/metabolism*
10.Epidemiological research progress on the impact of pollutants emitted from coal-fired power generation on the cardiopulmonary health of the population
Shuhui WAN ; Yueru YANG ; Jiahao SONG ; Bin WANG ; Weihong CHEN
Chinese Journal of Preventive Medicine 2024;58(3):381-388
To achieve the goals of carbon peak and carbon neutrality (double carbon), China has been updating and developing low-carbon coal-fired power generation technology. While reducing carbon dioxide emissions, it has achieved a significant reduction in emissions of pollutants such as particulate matter, sulfur dioxide, and nitrogen oxides. However, at the same time, with the relative increase in emissions of certain pollutants such as sulfur trioxide, ammonia, and volatile organic compounds, the types and proportions of pollutant emissions have changed. This study summarized the technological improvements in coal-fired power generation both domestically and internationally, as well as the types and proportions of pollutants emitted by different coal-fired power generation modes. It also reviewed the epidemiological research progress on the impact of pollutants emitted from coal-fired power generation on the cardiopulmonary health of the population, expounded environmental impact of different coal-fired power models, and analyzed the changes in population exposure load and cardiopulmonary health benefits of low-carbon coal-fired power generation emissions, aiming to provide references for achieving carbon reduction and emission reduction goals and protecting the health of the population.

Result Analysis
Print
Save
E-mail