1.Causal relationship between circulating inflammatory cytokines and bone mineral density based on two-sample Mendelian randomization
Shuai CHEN ; Jie JIN ; Huawei HAN ; Ningsheng TIAN ; Zhiwei LI
Chinese Journal of Tissue Engineering Research 2025;29(8):1556-1564
BACKGROUND:Many recent studies have shown a close relationship between inflammatory cytokines and osteoporosis and bone mineral density(BMD).However,the causal relationship between inflammatory cytokines and BMD has not been fully revealed. OBJECTIVE:To explore the potential causal relationship between inflammatory cytokines and BMD using a two-sample Mendelian randomization analysis. METHODS:The single nucleotide polymorphisms associated with 41 circulating inflammatory cytokines were selected from the open database of genome-wide association studies(GWAS)as instrumental variables.The GWAS data about BMD were from the Genetic Factors for Osteoporosis Consortium,involving a total of 32 735 individuals of European ancestry.Inverse variance weighting was used as the primary analysis to evaluate the causal effect.Weighted median,MR Egger regression,simple mode,and weighted mode methods were used to supplement the explanation.We used the MR-Egger intercept and MR-PRESSO method to conduct a pleiotropy test,the Cochran's Q test was used to determine whether there was heterogeneity in the results,and the leave-one-out method was used to evaluate the stability of the results.In addition,to more accurately assess the causality,the Bonferroni-corrected test was used to identify inflammatory cytokines that have a strong causal relationship with BMD. RESULTS AND CONCLUSION:(1)According to the results of the inverse variance weighting method,we found a positive causal relationship between interleukin-8 and lumbar spine BMD[β=0.075,95%confidence interval(CI):0.033-0.117,P=0.000 5),while a negative causal relationship between interleukin-17 and lumbar spine BMD(β=-0.083,95%CI:-0.152 to-0.014,P=0.018).There might be a negative causal relationship between tumor necrosis factor b and femoral neck BMD(β=-0.053,95%CI:-0.088 to-0.018,P=0.003),while a positive causal relationship between basic fibroblast growth factor and femoral neck BMD(β=0.085,95%CI:0.016-0.154,P=0.015).There might be a negative causal relationship between macrophage inflammatory protein-1a and total body BMD(β=-0.056,95%CI:-0.105 to-0.007,P=0.025).There was a negative causal relationship between interleukin-5(β=-0.019,95%CI:-0.031 to-0.006,P=0.004),stromal cell-derived factor-1a(β=-0.022,95%CI:-0.038 to-0.005,P=0.010),hepatocyte growth factor(β=-0.021,95%CI:-0.041 to-0.002,P=0.030),interleukin-4(β=-0.016,95%CI:-0.032 to-0.001,P=0.034)and heel BMD,while a positive causal relationship between nerve growth factor(β=0.019,95%CI:0.002-0.036,P=0.033),granulocyte colony-stimulating factor(β=0.011,95%CI:0.000-0.022,P=0.050),and heel BMD.Meanwhile,after the Bonferroni-corrected test,there was a strong positive causal effect between interleukin-8 and lumbar spine BMD(P=0.000 5).And consistent directional effects for all analyses were observed in MR Egger,weighted median,simple mode,and weighted mode methods.(2)Sensitivity analyses revealed no heterogeneity,pleiotropy,or outliers for the causal effect of circulating inflammatory cytokines on BMD.
2.Nucleic Acid-driven Protein Degradation: Frontiers of Lysosomal Targeted Degradation Technology
Han YIN ; Yu LI ; Yu-Chuan FAN ; Shuai GUO ; Yuan-Yu HUANG ; Yong LI ; Yu-Hua WENG
Progress in Biochemistry and Biophysics 2025;52(1):5-19
Distinct from the complementary inhibition mechanism through binding to the target with three-dimensional conformation of small molecule inhibitors, targeted protein degradation technology takes tremendous advantage of endogenous protein degradation pathway inside cells to degrade plenty of “undruggable” target proteins, which provides a novel route for the treatment of many serious diseases, mainly including proteolysis-targeting chimeras, lysosome-targeting chimeras, autophagy-targeting chimeras, antibody-based proteolysis-targeting chimeras, etc. Unlike proteolysis-targeting chimeras first found in 2001, which rely on ubiquitin-proteasome system to mainly degrade intracellular proteins of interest, lysosome-targeting chimeras identified in 2020, which was act as the fastly developing technology, utilize cellular lysosomal pathway through endocytosis mediated by lysosome-targeting receptor to degrade both extracellular and membrane proteins. As an emerging biomedical technology, nucleic acid-driven lysosome-targeting chimeras utilize nucleic acids as certain components of chimera molecule to replace with ligand to lysosome-targeting receptor or protein of interest, exhibiting broad application prospects and potential clinical value in disease treatment and drug development. This review mainly introduced present progress of nucleic acid-driven lysosome-targeting chimeras technology, including its basic composition, its advantages compared with antibody or glycopeptide-based lysosome-targeting chimeras, and focused on its chief application, in terms of the type of lysosome-targeting receptors. Most research about the development of nucleic acid-driven lysosome-targeting chimeras focused on those which utilized cation-independent mannose-6-phosphonate receptor as the lysosome-targeting receptor. Both mannose-6-phosphonate-modified glycopeptide and nucleic aptamer targeting cation-independent mannose-6-phosphonate receptor, even double-stranded DNA molecule moiety can be taken advantage as the ligand to lysosome-targeting receptor. The same as classical lysosome-targeting chimeras, asialoglycoprotein receptor can also be used for advance of nucleic acid-driven lysosome-targeting chimeras. Another new-found lysosome-targeting receptor, scavenger receptor, can bind dendritic DNA molecules to mediate cellular internalization of complex and lysosomal degradation of target protein, suggesting the successful application of scavenger receptor-mediated nucleic acid-driven lysosome-targeting chimeras. In addition, this review briefly overviewed the history of lysosome-targeting chimeras, including first-generation and second-generation lysosome-targeting chimeras through cation-independent mannose-6-phosphonate receptor-mediated and asialoglycoprotein receptor-mediated endocytosis respectively, so that a clear timeline can be presented for the advance of chimera technique. Meantime, current deficiency and challenge of lysosome-targeting chimeras was also mentioned to give some direction for deep progress of lysosome-targeting chimeras. Finally, according to faulty lysosomal degradation efficiency, more cellular mechanism where lysosome-targeting chimeras perform degradation of protein of interest need to be deeply explored. In view of current progress and direction of nucleic acid-driven lysosome-targeting chimeras, we discussed its current challenges and development direction in the future. Stability of natural nucleic acid molecule and optimized chimera construction have a great influence on the biological function of lysosome-targeting chimeras. Discovery of novel lysosome-targeting receptors and nucleic aptamer with higher affinity to the target will greatly facilitate profound advance of chimera technique. In summary, nucleic acid-driven lysosome-targeting chimeras have many superiorities, such as lower immunogenicity, expedient synthesis of chimera molecules and so on, in contrast to classical lysosome-targeting chimeras, making it more valuable. Also, the chimera technology provides new ideas and methods for biomedical research, drug development and clinical treatment, and can be used more widely through further research and optimization.
3.Diagnosis of coronary artery lesions in children based on Z-score regression model.
Yong WANG ; Jia-Ying JIANG ; Yan DENG ; Bo LI ; Ping SHUAI ; Xiao-Ping HU ; Yin-Yan ZHANG ; Han WU ; Lu-Wei YE ; Qian PENG
Chinese Journal of Contemporary Pediatrics 2025;27(2):176-183
OBJECTIVES:
To construct a Z-score regression model for coronary artery diameter based on echocardiographic data from children in Sichuan Province and to establish a Z-score calculation formula.
METHODS:
A total of 744 healthy children who underwent physical examinations at Sichuan Provincial People's Hospital from January 2020 to December 2022 were selected as the modeling group, while 251 children diagnosed with Kawasaki disease at the same hospital from January 2018 to December 2022 were selected as the validation group. Pearson correlation analysis was conducted to analyze the relationships between coronary artery diameter values and age, height, weight, and body surface area. A regression model was constructed using function transformation to identify the optimal regression model and establish the Z-score calculation formula, which was then validated.
RESULTS:
The Pearson correlation analysis showed that the correlation coefficients for the diameters of the left main coronary artery, left anterior descending artery, left circumflex artery, and right coronary artery with body surface area were 0.815, 0.793, 0.704, and 0.802, respectively (P<0.05). Among the constructed regression models, the power function regression model demonstrated the best performance and was therefore chosen as the optimal model for establishing the Z-score calculation formula. Based on this Z-score calculation formula, the detection rate of coronary artery lesions was found to be 21.5% (54/251), which was higher than the detection rate based on absolute values of coronary artery diameter. Notably, in the left anterior descending and left circumflex arteries, the detection rate of coronary artery lesions using this Z-score calculation formula was higher than that of previous classic Z-score calculation formulas.
CONCLUSIONS
The Z-score calculation formula established based on the power function regression model has a higher detection rate for coronary artery lesions, providing a strong reference for clinicians, particularly in assessing coronary artery lesions in children with Kawasaki disease.
Humans
;
Male
;
Female
;
Child, Preschool
;
Child
;
Coronary Artery Disease/diagnostic imaging*
;
Infant
;
Mucocutaneous Lymph Node Syndrome
;
Regression Analysis
;
Coronary Vessels/diagnostic imaging*
;
Echocardiography
;
Adolescent
4.Erratum: Author correction to "PRMT6 promotes tumorigenicity and cisplatin response of lung cancer through triggering 6PGD/ENO1 mediated cell metabolism" Acta Pharm Sin B 13 (2023) 157-173.
Mingming SUN ; Leilei LI ; Yujia NIU ; Yingzhi WANG ; Qi YAN ; Fei XIE ; Yaya QIAO ; Jiaqi SONG ; Huanran SUN ; Zhen LI ; Sizhen LAI ; Hongkai CHANG ; Han ZHANG ; Jiyan WANG ; Chenxin YANG ; Huifang ZHAO ; Junzhen TAN ; Yanping LI ; Shuangping LIU ; Bin LU ; Min LIU ; Guangyao KONG ; Yujun ZHAO ; Chunze ZHANG ; Shu-Hai LIN ; Cheng LUO ; Shuai ZHANG ; Changliang SHAN
Acta Pharmaceutica Sinica B 2025;15(4):2297-2299
[This corrects the article DOI: 10.1016/j.apsb.2022.05.019.].
5.Spatiotemporally delivery of Cas9 ribonucleoprotein/DNAzyme logic systems using near-infrared upconversion nanomachine for precise immunotherapy.
Chao CHEN ; Shiyu DU ; Qianglan LU ; Xueting SHEN ; Shuai DING ; Lihua QU ; Yamei GAO ; Zhiqiang YIN ; Zhe LI ; Yujun SONG ; Xin HAN
Acta Pharmaceutica Sinica B 2025;15(10):5431-5443
Gene therapy, harnessing the power of CRISPR-Cas9 and/or DNAzyme systems, stands as a pivotal approach in cancer therapy, enabling the meticulous manipulation of genes pivotal to tumorigenesis and immunity. However, the pursuit of precise gene therapy encounters formidable hurdles. Herein, a near-infrared upconversion theranostic nanomachine is devised and tailors for CRISPR-Cas9/DNAzyme systems mediate precise gene therapy. An ingenious logic DNAzyme system consists of Chain 1 (C1)/Chain 2 (C2) and endogenous lncRNA is designed. We employ manganese modified upconversion nanoparticles for carrying ultraviolet-responsive C1-PC linker-C2 (C2P) chain and Cas9 ribonucleoprotein (RNP), with outermost coats with hyaluronic acid. Upon reaching tumor microenvironment (TME), the released Mn2+ ions orchestrate a trifecta: facilitating endosomal escape, activating cGAS-STING signaling, and enabling T1-magnetic resonance imaging. Under near-infrared irradiation, Cas9 RNP/C2P complex dissociates, releasing Cas9 RNP into the nucleus to perform gene editing of Ptpn2, while C1/C2 chains self-assemble with endogenous lncRNA to form a functional DNAzyme system, targeting PD-L1 mRNA for gene silencing. This strategy remodels the TME by activating cGAS-STING signaling and dual immune checkpoints blockade, thus realizing tumor elimination. Our theranostic nanomachine armed with the CRISPR-Cas9/DNAzyme logic systems, represents a resourceful and promising strategy for advancing cancer systemic immunotherapy and precise gene therapy.
6.Hippocampal Extracellular Matrix Protein Laminin β1 Regulates Neuropathic Pain and Pain-Related Cognitive Impairment.
Ying-Chun LI ; Pei-Yang LIU ; Hai-Tao LI ; Shuai WANG ; Yun-Xin SHI ; Zhen-Zhen LI ; Wen-Guang CHU ; Xia LI ; Wan-Neng LIU ; Xing-Xing ZHENG ; Fei WANG ; Wen-Juan HAN ; Jie ZHANG ; Sheng-Xi WU ; Rou-Gang XIE ; Ceng LUO
Neuroscience Bulletin 2025;41(12):2127-2147
Patients suffering from nerve injury often experience exacerbated pain responses and complain of memory deficits. The dorsal hippocampus (dHPC), a well-defined region responsible for learning and memory, displays maladaptive plasticity upon injury, which is assumed to underlie pain hypersensitivity and cognitive deficits. However, much attention has thus far been paid to intracellular mechanisms of plasticity rather than extracellular alterations that might trigger and facilitate intracellular changes. Emerging evidence has shown that nerve injury alters the microarchitecture of the extracellular matrix (ECM) and decreases ECM rigidity in the dHPC. Despite this, it remains elusive which element of the ECM in the dHPC is affected and how it contributes to neuropathic pain and comorbid cognitive deficits. Laminin, a key element of the ECM, consists of α-, β-, and γ-chains and has been implicated in several pathophysiological processes. Here, we showed that peripheral nerve injury downregulates laminin β1 (LAMB1) in the dHPC. Silencing of hippocampal LAMB1 exacerbates pain sensitivity and induces cognitive dysfunction. Further mechanistic analysis revealed that loss of hippocampal LAMB1 causes dysregulated Src/NR2A signaling cascades via interaction with integrin β1, leading to decreased Ca2+ levels in pyramidal neurons, which in turn orchestrates structural and functional plasticity and eventually results in exaggerated pain responses and cognitive deficits. In this study, we shed new light on the functional capability of hippocampal ECM LAMB1 in the modulation of neuropathic pain and comorbid cognitive deficits, and reveal a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified hippocampal LAMB1/integrin β1 signaling as a potential therapeutic target for the treatment of neuropathic pain and related memory loss.
Animals
;
Laminin/genetics*
;
Hippocampus/metabolism*
;
Neuralgia/metabolism*
;
Cognitive Dysfunction/etiology*
;
Male
;
Peripheral Nerve Injuries/metabolism*
;
Extracellular Matrix/metabolism*
;
Integrin beta1/metabolism*
;
Pyramidal Cells/metabolism*
;
Signal Transduction
7.Propensity score matching analysis of the short-term efficacy of Kamikawa versus double- tract reconstruction in laparoscopic proximal gastric cancer surgery
Haicheng YANG ; Jiaxing HE ; Ying YANG ; Zhuo HAN ; Bo ZHANG ; Shuai ZHOU ; Tao WU ; Qing QIAO ; Xianli HE ; Nan WANG
Chinese Journal of Gastrointestinal Surgery 2024;27(3):261-267
Objective:To compare the short-term efficacy of Kamikawa anastomosis and double-tract reconstruction (DTR) after proximal gastrectomy.Methods:This was a propensity score matched, retrospective, cohort study. Inclusion criteria comprised age 20–70 years, diagnosis of gastric cancer by pathological examination of preoperative endoscopic biopsies, tumor diameter ≤4 cm, and location in the upper 1/3 of the stomach (including the gastroesophageal junction), and TNM stage IA, IB, or IIA. The study cohort comprised 73 patients who had undergone laparoscopic proximal gastric cancer radical surgery in the Department of Gastroenterology, Tangdu Hospital, Air Force Medical University between June 2020 and February 2023, 19 of whom were in the Kamikawa group and 54 in the DTR group. After using R language to match the baseline characteristics of patients in a ratio of 1:2, there were 17 patients in the Kamikawa group and 34 in the DTR group. Surgery-related conditions, postoperative quality of life, and postoperative complications were compared between the two groups.Results:After propensity score matching, there were no statistically significant differences in baseline data between the two groups ( P>0.05). Compared with the DTR group, the Kamikawa group had longer operative times (321.5±15.7 minutes vs. 296.8±26.1 minutes, t=32.056, P<0.001), longer anastomosis times (93.0±6.8 minutes vs. 45.3±7.7 minutes, t=56.303, P<0.001), and less bleeding (76 [54~103] mL vs.112 [82~148) mL, Z=71.536, P<0.001); these differences are statistically significant. There were no statistically significant differences between the two groups in tumor size, time to first postoperative passage of gas, postoperative hospital stay, number of lymph nodes removed, duration of lymph node dissection, or total hospitalization cost (all P>0.05). The median follow-up time was 6.1 ± 1.8 months. As to postoperative quality of life, the Kamikawa group had a lower rate of upper gastrointestinal contrast reflux than did the DTR group (0 vs. 29.4% [10/34], χ 2=6.220, P=0.013); this difference is statistically significant. However, differences between the two groups in quality of life score on follow-up of 3 months and 6 months on the Gastroesophageal Reflux Disease (GERD) scale were not statistically significant (all P>0.05). The incidence of postoperative complications was 2/17 in the Kamikawa group, which is significantly lower than the 41.2% (14/34) in the DTR group (χ 2=4.554, P=0.033). Conclusion:Kamikawa anastomosis and DTR are equally safe and effective procedures for reconstructing the digestive tract after proximal gastric surgery. Although Kamikawa anastomosis takes slightly longer and places higher demands on the surgical team, it is more effective at preventing postoperative reflux.
8.Application of CT Radiomics in Predicting Differentiation Level of Lung Adenocarcinoma
Shuai ZHANG ; Peng HAN ; Suya ZHANG ; Dingli YE ; Zhicheng HUANG
Chinese Journal of Medical Instrumentation 2024;48(6):591-594
Objective To investigate the value of prediction of the differentiation level in lung adenocarcinoma based on CT radiomics model.Methods Data from 507 patients with postoperative pathological confirmed lung adenocarcinoma and clearly defined differentiation level of lung adenocarcinoma were retrospective analyzed.The enrolled cases were divided into poorly differentiation group and moderate-to-high differentiation group based on the grading criteria.CT image features were extracted,and seven machine learning algorithms were used to construct prediction models to obtain the AUC,accuracy,specificity,and sensitivity.Results The poorly differentiation group consisted of 175 cases,while the moderate-to-high differentiation group had 332 cases.The XGBoost model demonstrated the best performance,with the AUC,accuracy,specificity,and sensitivity of this model on the validation set being 0.878,0.829,0.667,and 0.727,respectively.Conclusion CT radiomics model can effectively predict the differentiation level of poorly differentiation and moderate-to-high differentiation in lung adenocarcinoma.
9.Visual analysis of clinical research on traditional Chinese medicine syndrome types of depression based on Gephi
Yi DU ; Kejia LIU ; Chaoru HAN ; Shuai XU ; Juanjuan LI ; Jingjie ZHAO
Military Medical Sciences 2024;48(7):537-542
Objective To summarize the common traditional Chinese medicine(TCM)syndrome types and syndrome characteristics of depressive disorder(DD)by analyzing the existing clinical research literature,and to provide a basis for TCM syndrome classification and research on DD.Methods The documents related to TCM syndrome classification of DD were retrieved systematically from China National Knowledge Infrastructure(CNKI),China Biology Medicine Literature Service System(SinoMed),China Science and Technology Journal Database(VIP)and China Academic Journals Full-text Database(WanFang).The literature was organized and analyzed,and Gephi software was used to do the visual analysis.Results A total of 262 literature that met the criteria were included in the study.The annual average number of publications exceeds 10 articles since 2010.The top 5 syndrome types in TCM were Liver Qi Stagnation(LQS)type,Liver Stagnation and Spleen Deficiency(LSSD)type,Heart and Spleen Deficiency(HSD)type,Liver Stagnation and Phlegm Obstruction type and Liver Stagnation and Kidney Deficiency type,viscera syndrome classification mainly involved Liver,Spleen,Heart,Kidney and Gallbladder.The main syndrome type based on deficiency-excess syndrome classification was excess type.The strongest correlation of excess type was LQS,the strongest correlation of deficiency types was HSD,and the strongest correlation of deficiency and excess mixed syndrome type was LSSD.Conclusion The publication volume of literature related to TCM syndrome types of DD shows a fluctuating upward trend.The occurrence and development of DD are related to dysfunction of multiple organs,and liver stagnation is the core syndrome,which may run through the entire process of DD.
10.Progress of magnetic iron oxide nanoparticles in targeted diagnosis and treatment of pancreatic cancer
Jiaqiang REN ; Shuai WU ; Jiantao MO ; Cancan ZHOU ; Liang HAN ; Zheng WU
Journal of Surgery Concepts & Practice 2024;29(1):61-66
Pancreatic cancer has a very poor prognosis.Early diagnosis and treatment are especially critical for improving its prognosis.Nanotechnology has been widely used in the diagnosis and treatment of pancreatic cancer.Relying on the unique physicochemical properties of nanoparticles and their rich surface modifications,effective enrichment of tumor sites can be achieved.Magnetic iron oxide nanoparticles(MIONPs)is one of the commonly used nanomaterials in the diagnosis and treatment of pancreatic cancer,and has good biocompatibility.Through special surface modification,it can be used in targeted diagnosis and treatment of pancreatic cancer.MIONPs can be used as a contrast agent for MRI,and by modifying the surface,they also can be used in targeted imaging of pancreatic cancer.And they can also be modified as a drug delivery system to achieve targeted delivery of drugs and improve therapeutic effects.However,the application of MIONPs in pancreatic cancer diagnosis and treatment still faces some challenges,such as nanotoxicity and cost issues.With the development of technology,MIONPs are expected to play an important role in the personalized diagnosis and treatment of pancreatic cancer.

Result Analysis
Print
Save
E-mail