1.Self-face Advantage Processing and Its Mechanisms
Xiao-Xia TANG ; Shu-Jia ZHANG ; Ying ZHANG ; Li WANG
Progress in Biochemistry and Biophysics 2025;52(7):1771-1791
Self-face is a unique and highly distinctive stimulus, not shared with others, and serves as a reliable marker of self-awareness. Compared to other faces, self-face processing exhibits several advantages, including the self-face recognition advantage, self-face attention advantage, and self-face positive processing advantage. The self-face recognition advantage manifests as faster and more accurate identification across different orientations and spatial frequency components, supported by enhanced early event-related potential (ERP) components, such as N170. Attentional biases toward self-face are evident in target detection during spatial tasks and the attentional blink effect in temporal paradigms. However, measurement sensitivity, perceptual load, and task demands contribute to some mixed findings. Positive biases further characterize the self-face processing advantage, with individuals perceiving their faces as more attractive or trustworthy than objective representations. These biases even extend to self-similar others, influencing social behaviors such as trust and voting preferences. Self-face processing advantages have been observed at an unconscious level and are regulated by several factors, including self-esteem, cultural differences, and multisensory integration. Cultural and individual differences play a crucial role in shaping self-face advantages. Individuals from Western cultures, which emphasize independent self-construal, exhibit stronger self-face biases compared to those from East Asian collectivist contexts. Self-esteem also modulates self-face advantages: high-self-esteem individuals generally maintain their self-face recognition advantage despite interference, exhibit attentional prioritization of self-faces, and demonstrate enhanced positive associations with subliminal self-faces. In contrast, low-self-esteem individuals display recognition vulnerabilities to social cues, show context-dependent attentional divergence (prioritizing others’ faces in task-oriented settings while prioritizing self-face in free-viewing tasks), and exhibit reversed positive associations with subliminal self-faces. Multisensory integration, such as synchronized visual-tactile cues, enhances self-face advantages and induces perceptual plasticity. This phenomenon is exemplified by the enfacement illusion, in which synchronous visual and tactile inputs update the mental representation of the self-face, leading to assimilation with another face. Neuroanatomically, self-face processing is predominantly lateralized to the right hemisphere and involves a network of brain regions, including the occipital lobe, temporal lobe, frontal lobe, insula, and cingulate gyrus. Disruptions in these networks are linked to self-face processing deficits in socio-cognitive disorders. For instance, autism spectrum disorder (ASD) and schizophrenia are associated with attenuated self-face advantages and abnormal neural activity in regions such as the right inferior frontal gyrus, insula, and posterior cingulate cortex. These findings suggest that self-face processing could serve as a potential biomarker for the early diagnosis and intervention of such disorders. In recent years, researchers have proposed various theoretical explanations for self-face processing and its advantage effects. However, some studies have reported no significant behavioral or neural advantages of self-faces over familiar faces, leaving the specificity of self-face a subject of debate. Further elucidation of self-face specificity requires the adoption of a face association paradigm, which controls for facial familiarity and helps determine whether qualitative differences exist between self-faces and familiar faces. Given the close relationship between self-face processing advantages and socio-cognitive disorders (e.g., ASD, schizophrenia), a deeper understanding of self-face specificity has the potential to provide critical insights into the early identification, classification, and intervention of these disorders. This research holds both theoretical significance and substantial social value.
2.Mechanism of Chaijin Jieyu Anshen Formula in regulating synaptic damage in nucleus accumbens neurons of rats with insomnia complicated with depression through TREM2/C1q axis.
Ying-Juan TANG ; Jia-Cheng DAI ; Song YANG ; Xiao-Shi YU ; Yao ZHANG ; Hai-Long SU ; Zhi-Yuan LIU ; Zi-Xuan XIANG ; Jun-Cheng LIU ; Hai-Xia HE ; Jian LIU ; Yuan-Shan HAN ; Yu-Hong WANG ; Man-Shu ZOU
China Journal of Chinese Materia Medica 2025;50(16):4538-4545
This study aims to investigate the effect of Chaijin Jieyu Anshen Formula on the neuroinflammation of rats with insomnia complicated with depression through the regulation of triggering receptor expressed on myeloid cells 2(TREM2)/complement protein C1q signaling pathway. Rats were randomly divided into a normal group, a model group, a positive drug group, as well as a high, medium, and low-dose groups of Chaijin Jieyu Anshen Formula, with 10 rats in each group. Except for the normal group, the other groups were injected with p-chlorophenylalanine and exposed to chronic unpredictable mild stress to establish the rat model of insomnia complicated with depression. The sucrose preference experiment, open field experiment, and water maze test were performed to evaluate the depression in rats. Enzyme-linked immunosorbent assay was employed to detect serum 5-hydroxytryptamine(5-HT), dopamine(DA), and norepinephrine(NE) levels. Hematoxylin and eosin staining and Nissl staining were used to observe the damage in nucleus accumbens neurons. Western blot and immunofluorescence were performed to detect TREM2, C1q, postsynaptic density 95(PSD-95), and synaptophysin 1(SYN1) expressions in rat nucleus accumbens, respectively. Golgi-Cox staining was utilized to observe the synaptic spine density of nucleus accumbens neurons. The results show that, compared with the model group, Chaijin Jieyu Anshen Formula can significantly increase the sucrose preference as well as the distance and number of voluntary activities, shorten the immobility time in forced swimming test and the successful incubation period of positioning navigation, and prolong the stay time of space exploration in the target quadrant test. The serum 5-HT, DA, and NE contents in the model group are significantly lower than those in the normal group, with the above contents significantly increased after the intervention of Chaijin Jieyu Anshen Formula. In addition, Chaijin Jieyu Anshen Formula can alleviate pathological damages such as swelling and loose arrangement of tissue cells in the nucleus accumbens, while increasing the Nissl body numbers. Chaijin Jieyu Anshen Formula can improve synaptic damage in the nucleus accumbens and increase the synaptic spine density. Compared to the normal group, the expression of C1q protein was significantly higher in the model group, while the expression of TREM2 protein was significantly lower. Compared to the model group, the intervention with Chaijin Jieyu Anshen Formula significantly downregulated the expression of C1q protein and significantly upregulated the expression of TREM2. Compared with the model group, the PSD-95 and SYN1 fluorescence intensity is significantly increased in the groups receiving different doses of Chaijin Jieyu Anshen Formula. In summary, Chaijin Jieyu Anshen Formula can reduce the C1q protein expression, relieve the TREM2 inhibition, and promote the synapse-related proteins PSD-95 and SNY1 expression. Chaijin Jieyu Anshen Formula improves synaptic injury of the nucleus accumbens neurons, thereby treating insomnia complicated with depression.
Animals
;
Male
;
Rats
;
Nucleus Accumbens/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Depression/complications*
;
Membrane Glycoproteins/genetics*
;
Rats, Sprague-Dawley
;
Sleep Initiation and Maintenance Disorders/complications*
;
Neurons/metabolism*
;
Receptors, Immunologic/genetics*
;
Signal Transduction/drug effects*
;
Synapses/metabolism*
3.The application of machine learning in the auxiliary diagnosis of specific learning disorder.
Hao ZHAO ; Shu-Lan MEI ; Jing-Yu WANG ; Xia CHI
Chinese Journal of Contemporary Pediatrics 2025;27(11):1420-1425
Specific learning disorder (SLD) is a common neurodevelopmental disorder in children that significantly affects academic performance and quality of life. At present, diagnosis mainly relies on standardized tests and professional evaluations, a process that is complex and time-consuming. Multiple studies have shown that machine learning can analyze diverse data, including test scores, handwriting samples, eye movement data, neuroimaging data, and genetic data, to automatically learn the relationships between input features and output labels and achieve efficient prediction. It shows great potential for early screening, auxiliary diagnosis, and research on underlying mechanisms in SLD. This article reviews the applications of machine learning in the auxiliary diagnosis of SLD and discusses its performance when handling different data types.
Humans
;
Machine Learning
;
Specific Learning Disorder/diagnosis*
;
Child
4.Analysis of Delayed Hemolytic Transfusion Reaction in Children with Repeated Blood Transfusion.
Li-Lan GAO ; Meng-Xing LYU ; Shu-Xia WANG ; Xiao-Hong JIN ; Jian-Xiang LIU ; Mei-Kun HU ; Ke-Xuan QU
Journal of Experimental Hematology 2025;33(1):217-223
OBJECTIVE:
To summarize and analyze the characteristics of delayed hemolytic transfusion reaction in children, in order to provide a scientific basis for clinical prevention, and ensure the safety of children's blood transfusion.
METHODS:
The basic situation, clinical symptoms and signs, diagnosis time and disappearance time of alloantibody of delayed hemolytic transfusion reaction in children were retrospectively analyzed. The serological test, routine blood test, biochemical detection and urine analysis results were compared pre- and post-transfusion.
RESULTS:
Among 15 164 children with repeated blood transfusion, 23 cases occurred delayed hemolytic transfusion reactions, with an incidence rate of 0.15%, and mainly children with thalassemia and acute leukemia. 39.13% of delayed hemolytic reactions occurred in children with more than 20 times of blood transfusions. Anemia was the main clinical symptom in 86.96% of children. 4.35% of children had hypotension and dyspnea. Serological test results showed that the positive rate of direct antiglobulin test was 91.30%, and that of erythrocyte homologous antibody test was 100%. Erythrocyte alloantibodies were common in Rh and Kidd blood group systems, accounting for 73.91% and 13.04%, respectively. Laboratory test results showed that hemoglobin, reticulocyte, spherocyte, total bilirubin, indirect bilirubin, lactate dehydrogenase, serum ferritin and urine color were significantly different after transfusion compared with those before transfusion (all P <0.05). The average diagnosis time of delayed hemolytic transfusion reactions was 18.56 days, and the average disappearance time of erythrocyte alloantibodies was 118.43 days.
CONCLUSION
The incidence of delayed hemolytic transfusion reaction is high in children with repeated blood transfusion, and the disappearance time of erythrocyte homologous antibody is long. Blood matched ABO, Rh and Kidd blood group antigens should be transfused prophylactically. Once diagnosed, erythrocyte alloantibody corresponding to antigen-negative blood should be used throughout the whole process.
Humans
;
Child
;
Retrospective Studies
;
Child, Preschool
;
Transfusion Reaction
;
Male
;
Female
;
Infant
;
Adolescent
;
Isoantibodies/blood*
;
Blood Transfusion
5.Clinical Characteristics and Prognostic Analysis of Newly Diagnosed Acute Myeloid Leukemia Patients with NRAS and KRAS Gene Mutations.
Zhang-Yu YU ; Bo CAI ; Yi WANG ; Yang-Yang LEI ; Bing-Xia LI ; Yu-Fang LI ; Yan-Ping SHI ; Jia-Xin CHEN ; Shu-Hong LIU ; Chang-Lin YU ; Mei GUO
Journal of Experimental Hematology 2025;33(3):682-690
OBJECTIVE:
To retrospectively analyze the clinical characteristics, co-mutated genes in newly diagnosed acute myeloid leukemia (AML) patients with NRAS and KRAS gene mutations, and the impact of NRAS and KRAS mutations on prognosis.
METHODS:
The clinical data and next-generation sequencing results of 80 newly diagnosed AML patients treated at our hospital from December 2018 to December 2023 were collected. The clinical characteristics, co-mutated genes of NRAS and KRAS , and the impact of NRAS and KRAS mutations on prognosis in newly diagnosed AML patients were analyzed.
RESULTS:
Among 80 newly diagnosed AML patients, NRAS mutations were detected in 20 cases(25.0%), and KRAS mutations were detected in 9 cases(11.3%). NRAS mutations predominantly occurred at codons 12 and 13 of exon 2, as well as codon 61 of exon 3, while KRAS mutations were most commonly occurred at codons 12 and 13 of exon 2, all of which were missense mutations. There were no statistically significant differences observed in terms of age, sex, white blood cell count(WBC), hemoglobin(Hb), platelet count(PLT), bone marrow blasts, first induction chemotherapy regimen, CR1/CRi1 rates, chromosome karyotype, 2022 ELN risk classification and allogeneic hematopoietic stem cell transplantation(allo-HSCT) among the NRAS mutation group, KRAS mutation group and NRAS/KRAS wild-type group (P >0.05). KRAS mutations were significantly correlated with PTPN11 mutations (r =0.344), whereas no genes significantly associated with NRAS mutations were found. Survival analysis showed that compared to the NRAS/KRAS wild-type group, patients with NRAS mutation had a relatively higher 5-year overall survival (OS) rate and relapse-free survival (RFS) rate, though the differences were not statistically significant (P =0.097, P =0.249). Compared to the NRAS/KRAS wild-type group, patients with KRAS mutation had a lower 5-year OS rate and RFS rate, with no significant differences observed (P =0.275, P =0.442). There was no significant difference in the 5-year RFS rate between the KRAS mutation group and NRAS mutation group (P =0.157), but the 5-year OS rate of patients with KRAS mutation was significantly lower than that of patients with NRAS mutation (P =0.037).
CONCLUSION
In newly diagnosed AML patients, KRAS mutation was significantly correlated with PTPN11 mutation. Compared to patients with NRAS/KRAS wild-type, those with NRAS mutation showed a more favorable prognosis, while patients with KRAS mutation showed a poorer prognosis; however, these differences did not reach statistical significance. Notably, the prognosis of AML patients with KRAS mutation was significantly inferior compared to those with NRAS mutation.
Humans
;
Leukemia, Myeloid, Acute/diagnosis*
;
Mutation
;
Prognosis
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
GTP Phosphohydrolases/genetics*
;
Retrospective Studies
;
Membrane Proteins/genetics*
;
Female
;
Male
;
Middle Aged
;
Adult
;
Aged
6.Clinical Characteristics of Adult Acute Myeloid Leukemia Patients with NUP98::HOXA9 Fusion Gene.
Hai-Xia CAO ; Ya-Min WU ; Shu-Juan WANG ; Zhi-Dan CHEN ; Jing-Han HU ; Xiao-Qian GENG ; Fang WANG ; Ling SUN ; Zhong-Xing JIANG ; Zhi-Lei BIAN
Journal of Experimental Hematology 2025;33(5):1241-1247
OBJECTIVE:
To investigate the clinical characteristics, treatment and prognosis of adult AML patients with NUP98::HOXA9 fusion gene.
METHODS:
From May 2017 to October 2023, among 2 113 AML patients who visited the Hematology Department of our hospital, patients with NUP98 rearrangements were screened. The clinical characteristics, chromosome karyotypes, immunophenotypes, gene mutations, treatment efficacy and prognosis of the patients with NUP98::HOXA9 positive were analyzed.
RESULTS:
Among the 2 113 AML patients, there were 18 cases with NUP98 rearrangement, including 14 NUP98::HOXA9 positive cases, with a detection rate of 0.66% (14/2 113). The median age of the NUP98::HOXA9 positive patients was 42.5 (23-64) years old. The most common chromosome karyotype was t(7; 11)(p15; p15). The immunophenotypes of all patients expressed CD13, CD33, CD117 and CD38, and most patients expressed CD34 and cMPO, while only a few expressed HLA-DR. Second-generation sequencing (NGS) was performed to detect genetic mutations associated with leukemia in all 14 patients, and the genes exhibiting a high frequency of mutation were WT1 (10/14), TET2 (7/14), and FLT3-ITD (6/14). Additionally, mutations were also observed in KRAS/NRAS, IDH1, and KIT. Of the 13 patients who received treatment, 9 achieved complete remission (CR), and all 3 patients who received azacytidine(AZA)+ venetoclax (VEN) regimen achieved CR after the first course of treatment. Within this cohort, 6 patients were classified as relapsed/refractory (6/13). 4 patients underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT), of which two achieved long-term survival. The median follow-up time was 12 (2.1-65.0) months, while the median overall survival (OS) and relapse-free survival (RFS) were recorded as 11.4 months and 9.6 months, respectively.
CONCLUSION
The most common type of NUP98 rearrangement in adults AML patients is NUP98::HOXA9 , which is often accompanied by somatic mutations in WT1, TET2, and FLT3-ITD. These patients are prone to relapse, have short survival time, and generally face poor prognoses. Hopefully, utilization of the AZA+VEN regimen is anticipated to enhance the rate of induced remission in the patients, and some patients may prolong their survival through allo-HSCT. However, more effective treatment methods are still needed to improve the overall prognosis of these patients.
Humans
;
Adult
;
Leukemia, Myeloid, Acute/genetics*
;
Middle Aged
;
Prognosis
;
Nuclear Pore Complex Proteins/genetics*
;
Oncogene Proteins, Fusion/genetics*
;
Mutation
;
Male
;
Female
;
Young Adult
;
Homeodomain Proteins/genetics*
7.Ventral Hippocampal CA1 GADD45B Regulates Susceptibility to Social Stress by Influencing NMDA Receptor-Mediated Synaptic Plasticity.
Mengbing HUANG ; Jian BAO ; Xiaoqing TAO ; Yifan NIU ; Kaiwei LI ; Ji WANG ; Xiaokang GONG ; Rong YANG ; Yuran GUI ; Hongyan ZHOU ; Yiyuan XIA ; Youhua YANG ; Binlian SUN ; Wei LIU ; Xiji SHU
Neuroscience Bulletin 2025;41(3):406-420
Growth arrest DNA damage-inducible protein 45 β (GADD45B) has been reported to be a regulatory factor for active DNA demethylation and is implicated in the modulation of synaptic plasticity and chronic stress-related psychopathological processes. However, its precise role and mechanism of action in stress susceptibility remain elusive. In this study, we found a significant reduction in GADD45B expression specifically in the ventral, but not the dorsal hippocampal CA1 (dCA1) of stress-susceptible mice. Furthermore, we demonstrated that GADD45B negatively regulates susceptibility to social stress and NMDA receptor-dependent long-term potentiation (LTP) in the ventral hippocampal CA1 (vCA1). Importantly, through pharmacological inhibition using the NMDA receptor antagonist MK801, we provided further evidence supporting the hypothesis that GADD45B potentially modulates susceptibility to social stress by influencing NMDA receptor-mediated LTP. Collectively, these results suggested that modulation of NMDA receptor-mediated synaptic plasticity is a pivotal mechanism underlying the regulation of susceptibility to social stress by GADD45B.
Animals
;
Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors*
;
CA1 Region, Hippocampal/drug effects*
;
Male
;
Stress, Psychological/physiopathology*
;
Mice
;
Neuronal Plasticity/drug effects*
;
Long-Term Potentiation/drug effects*
;
Mice, Inbred C57BL
;
Antigens, Differentiation/metabolism*
;
Dizocilpine Maleate/pharmacology*
;
Excitatory Amino Acid Antagonists/pharmacology*
;
GADD45 Proteins
8.Shionone protects cerebral ischemic injury through alleviating microglia-mediated neuroinflammation.
Lushan XU ; Chenggang LI ; ChenChen ZHAO ; Zibu WANG ; Zhi ZHANG ; Xin SHU ; Xiang CAO ; Shengnan XIA ; Xinyu BAO ; Pengfei SHAO ; Yun XU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(4):471-479
Microglia, the resident immune cells in the central nervous system (CNS), rapidly transition from a resting to an active state in the acute phase of ischemic brain injury. This active state mediates a pro-inflammatory response that can exacerbate the injury. Targeting the pro-inflammatory response of microglia in the semi-dark band during this acute phase may effectively reduce brain injury. Shionone (SH), an active ingredient extracted from the dried roots and rhizomes of the genus Aster (Asteraceae), has been reported to regulate the inflammatory response of macrophages in sepsis-induced acute lung injury. However, its function in post-stroke neuroinflammation, particularly microglia-mediated neuroinflammation, remains uninvestigated. This study found that SH significantly inhibited lipopolysaccharide (LPS)-induced elevation of inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS), in microglia in vitro. Furthermore, the results demonstrated that SH alleviated infarct volume and improved behavioral performance in middle cerebral artery occlusion (MCAO) mice, which may be attributed to the inhibition of the microglial inflammatory response induced by SH treatment. Mechanistically, SH potently inhibited the phosphorylation of serine-threonine protein kinase B (AKT), mammalian target of rapamycin (mTOR), and signal transducer and activator of transcription 3 (STAT3). These findings suggest that SH may be a potential therapeutic agent for relieving ischemic stroke (IS) by alleviating microglia-associated neuroinflammation.
Animals
;
Microglia/immunology*
;
Mice
;
Male
;
Mice, Inbred C57BL
;
Brain Ischemia/immunology*
;
Neuroinflammatory Diseases/drug therapy*
;
Neuroprotective Agents/administration & dosage*
;
Interleukin-1beta/genetics*
;
STAT3 Transcription Factor/genetics*
;
TOR Serine-Threonine Kinases/genetics*
;
Tumor Necrosis Factor-alpha/genetics*
;
Proto-Oncogene Proteins c-akt/immunology*
;
Nitric Oxide Synthase Type II/genetics*
;
Lipopolysaccharides
9.Research status of gene mutation encoding cardiomyocyte sarcomere and hypertrophic cardiomyopathy
Ya-Fen CHEN ; Cheng-Yi WANG ; Li-Xia YU ; Shu-Su DONG ; Li-Ming CHEN ; Hai-Ying WANG
The Chinese Journal of Clinical Pharmacology 2024;40(1):130-134
Mutations in myosin heavy chain 7(MYH7)and myosin binding protein C3(MYBPC3)genes encoding thick filaments are the main cause of hypertrophic cardiomyopathy(HCM),while a small part of HCM is caused by mutations of troponin C1,slow skeletal and cardiac type(TNNC1),troponin T2,cardiac type(TNNT2),troponin I3,cardiac type(TNNI3),actin alpha cardiac muscle 1(ACTC1),and tropomyosin 1(TPM1)genes encoding thin filaments.In this review,we mainly introduce the detailed mechanism and research status of HCM caused by mutations of the gene encoding cardiomyocyte sarcomere in the past few years,in order to provide reference for further study of the pathogenesis and treatment of HCM.
10.Study on the potential allergen and mechanism of pseudo-allergic reactions induced by combined using of Reduning injection and penicillin G injection based on metabolomics and bioinformatics
Yu-long CHEN ; You ZHAI ; Xiao-yan WANG ; Wei-xia LI ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Xiao-fei CHEN ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Kun LI ; Jin-fa TANG ; Ming-liang ZHANG
Acta Pharmaceutica Sinica 2024;59(2):382-394
Based on the strategy of metabolomics combined with bioinformatics, this study analyzed the potential allergens and mechanism of pseudo-allergic reactions (PARs) induced by the combined use of Reduning injection and penicillin G injection. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). Based on UPLC-Q-TOF/MS technology combined with UNIFI software, a total of 21 compounds were identified in Reduning and penicillin G mixed injection. Based on molecular docking technology, 10 potential allergens with strong binding activity to MrgprX2 agonist sites were further screened. Metabolomics analysis using UPLC-Q-TOF/MS technology revealed that 34 differential metabolites such as arachidonic acid, phosphatidylcholine, phosphatidylserine, prostaglandins, and leukotrienes were endogenous differential metabolites of PARs caused by combined use of Reduning injection and penicillin G injection. Through the analysis of the "potential allergen-target-endogenous differential metabolite" interaction network, the chlorogenic acids (such as chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, and isochlorogenic acid A) and

Result Analysis
Print
Save
E-mail