1.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
2.Effects of hydroxysafflor yellow A on autophagy in bEnd.3 cells after oxygen-glucose deprivation
Yao-Yao DAI ; Meng-Qi SHU ; Ru-Heng WEI ; Zhu-Yue MIAO ; Zhi-Bin DING ; Dong MA ; Jian-Jun HUANG ; Li-Juan SONG ; Cun-Gen MA
The Chinese Journal of Clinical Pharmacology 2024;40(12):1734-1738
Objective To explore the effect and mechanism of hydroxysafflor yellow A(HSYA)on autophagy in bEnd.3 cells after oxygen-glucose deprivation(OGD).Methods The bEnd.3 cells were divided into normal group(conventional culture),model group(OGD model),HSYA group(OGD model+75 μmol·L-1 HSYA),3-methyladenine(3MA)group(5 mmol·L-1 3MA+OGD model)and 3 MA+HSYA group(5 mmol·L-1 3 MA+OGD model+75 μmol·L-1 HSYA).The level of apoptosis was determined by TUNEL fluorescence staining;Western blot was used to detect the expression of autophagy,blood brain barrier(BBB)related proteins;real time fluorescence quantitative polymerase chain reaction method for determining the expression of sirtuin-1(SIRT1)and forkhead box protein O3a(FOXO3A)mRNA.Results In the normal group,model group,HSYA group,3MA group and 3MA+HSYA group,the positive cells selected for TUNEL staining were 5.00±1.00,28.00±2.00,21.00±3.00,35.33±2.51 and 29.67±2.52;the expression levels of microtubule-associated protein 1 light chain 3-Ⅱ/-Ⅰ(LC3-Ⅱ/-Ⅰ)were 0.90±0.20,1.34±0.10,1.95±0.14,0.76±0.15 and 1.14±0.09;sequestosome 1(P62)were 0.99±0.02,0.60±0.02,0.38±0.01,0.67±0.04 and 0.54±0.01;occludin were 1.39±0.17,0.62±0.15,1.00±0.09,0.40±0.13 and 0.80±0.15;zonula occludens-1(ZO-1)were 1.63±0.20,0.64±0.06,0.98±0.14,0.37±0.14 and 0.87±0.04;SIRT1 mRNA were 1.00±0.00,0.75±0.07,1.69±0.09,0.31±0.02 and 0.56±0.01;FOXO3A mRNA were 1.00±0.00,0.80±0.05,1.47±0.09,0.40±0.01 and 0.62±0.09,respectively.Significant differences were found between model group and normal group,HSYA group and model group,3MA+HSYA group and 3MA group(P<0.05,P<0.01,P<0.001).Conclusion HSYA may enhance autophagy levels in bEnd.3 cells after OGD through the SIRT1/FOXO3A pathway,inhibit cell apoptosis and alleviate BBB damage.
3.Research status of Wnt5a-Frizzled-2 pathway and ischemia-reperfusion injury
Zhi-Peng SUN ; Shu-Su DONG ; Chuan-Cheng MA ; Chen-Ying WANG ; Fei CHEN ; Hai-Ying WANG
The Chinese Journal of Clinical Pharmacology 2024;40(13):1972-1976
The Wnt signaling pathway includes both classical and non classical pathways,Wnt5a-Frizzled-2 pathway participates in the Wnt/Ca2+signaling pathway in the non-classical pathway,which is activated by the Wnt-related protein Wnt5a and its ligand Frizzled-2.It can regulate some key sites in cells to affect cell signal transduction,and is closely related to cell growth process.Activation of Wnt5a-Fizzled-2 pathway occurs in some tissues with abundant blood supply,such as heart and brain tissues,during ischemia-reperfusion.Activation of the Wnt5a-Frizzled-2 pathway causes these intracellular calcium overload,ultimately promoting apoptosis.This article reviews the abnormal activation of Wnt5a-Frizzled-2 signaling pathway in ischemia-reperfusion injury diseases and the induced calcium overload leading to apoptosis,in order to provide reference for the study of physiological mechanisms of ischemia-reperfusion injury.
4.Low-dose Radiation Therapy for Osteoarthritis
Guo-Rong MA ; Yong-Ze YANG ; Xin MENG ; Yu-Ting GAO ; Shu-Zhi LI ; Hong-Zhang GUO ; Xiao-Dong JIN
Progress in Biochemistry and Biophysics 2024;51(6):1382-1392
Osteoarthritis (OA) is a chronic degenerative joint disease and the most common type of arthritis. It involves almost any joint and can lead to chronic pain and disability. In the late 19th century, Roentgen discovered X-rays, and then began to use radiotherapy to treat tumors. In the 1980s, Luckey thought that low-level radiation (LDRT) might be beneficial to biology, and it was gradually applied to the treatment of some diseases. This paper introduces the epidemiology, risk factors, clinical manifestations and treatment methods of OA, points out that the cartilage injury and the important effect of synovial inflammation in the pathogenesis of OA, namely when the homeostasis of articular cartilage are destroyed, synthetic metabolism and catabolism imbalances, cartilage cells damaged their breakdown products consumed by synovial cells. Synovial cells and synovial macrophages secrete proinflammatory cytokines, metalloproteinases and proteolytic enzymes, leading to cartilage matrix degradation and chondrocyte damage, which aggravates synovial inflammation and cartilage damage, forming a vicious cycle. The possible mechanism and clinical research progress of LDRT in alleviating OA are discussed. LDRT can regulate inflammatory response, inhibit the production of pro-inflammatory cytokines, and promote the production of anti-inflammatory cytokines, thereby achieving anti-inflammatory effect. Studies have shown that after irradiation, the expression of inducible nitric oxide synthase (iNOS) was decreased, the release of reactive oxygen species (ROS) and the production of superoxide were inhibited, the anti-inflammatory phenotype of macrophages was differentiated from M1 to M2, the inflammatory CD8+ T cells were transformed into CD4+ T cells, and the number of dendritic cells (DC) was significantly reduced. LDRT inhibit the production of proinflammatory factors in leukocytes, reduce their recruitment and adhesion, and down-regulate the expression levels of cell adhesion molecules such as selectin, intercellular adhesion molecule (ICAM) and vascular endothelial cell adhesion molecule (VCAM). LDRT can regulate endothelial cells, stimulate endothelial cells to produce a large amount of TGF-β1, reduce the adhesion of endothelial cells to peripheral blood mononuclear cells (PBMC), and contribute to the anti-inflammatory effect of LDRT. It also exerted anti-inflammatory effects by regulating mitochondrial growth differentiation factor 15 (GDF15). After low-level radiation, the MMP-13 (matrix metalloproteinases-13) and the ADAMTS5 (recombinant a disintegrin and metalloproteinase with thrombospondin-5) decreased, the Col2a1 (collagen type 2) increased in chondrocytes. In the existing clinical studies, most patients can achieve relief of joint pain and recovery of joint mobility after irradiation, and the patients have good feedback on the efficacy. The adverse reactions (acute reactions and carcinogenic risks) caused by LDRT in the treatment of OA are also discussed. During the treatment of OA, a few patients have symptoms such as redness, dryness or itching at the joint skin, and the symptoms are mild and do not require further treatment. Patients are thus able to tolerate more frequent and longer doses of radiotherapy. In general, LDRT itself has the advantages of non-invasive, less adverse reactions, and shows the effect of pain relief and movement improvement in the treatment of OA. Therefore, LDRT has a broad application prospect in the treatment of OA.
5.A serial case study of the combined use of intraoperative CT and surgical navigation system for the removal of small foreign bodies in the maxillofacial region
Dong-Yang MA ; Shu-Meng ZHANG ; Chao-Yuan PANG ; Wen-Kai ZHANG ; Bing-Wu WANG
Chinese Journal of Traumatology 2024;27(5):279-283
Purpose::The removal of small foreign bodies embedded within the deep soft tissues of the maxillofacial region is a complex and challenging task for maxillofacial surgeons. The purpose of this study was to explore the efficacy of the combination of intraoperative CT and surgical navigation for the removal of small foreign objects in the maxillofacial region.Methods::A serial case study was conducted involving all consecutive patients who underwent surgical removal of small foreign bodies in the maxillofacial region. The combination of intraoperative CT and a surgical navigation system was used at a single medical institution from January 2018 to December 2022. Comprehensive data, including patient demographics, characteristics of the foreign bodies, previous surgical interventions, duration of the surgical procedure, and removal success rate were collected for this study. Relevant data were recorded into Microsoft Excel sheet and analyzed using SPSS version 22.0.Results::Nine patients (6 males and 3 females) were included in this study, with an average age of 37 years. Each patient had previously undergone an unsuccessful removal attempt utilizing conventional surgical methods based on preoperative CT imaging or C-arm guidance at a local healthcare facility. Four patients also experienced unsuccessful attempts with preoperative CT image-based navigation systems. However, by employing the combined approach of intraoperative CT and surgical navigation, the foreign bodies were successfully removed in all 9 patients. The mean duration of the surgical procedure was 59 min, and the average size of the foreign bodies was approximately 26 mm 3. Postoperative follow-up exceeding 6 months revealed no complications. Conclusion::The combined use of a surgical navigation system and intraoperative CT represents a potent and effective strategy for the precise localization and subsequent removal of small foreign bodies from the soft tissue structures of the maxillofacial region. This integrative approach appears to increase the success rate of surgical interventions in such cases.
6.Epidemiological Survey of Hemoglobinopathies Based on Next-Generation Sequencing Platform in Hunan Province, China.
Hui XI ; Qin LIU ; Dong Hua XIE ; Xu ZHOU ; Wang Lan TANG ; De Guo TANG ; Chun Yan ZENG ; Qiong WANG ; Xing Hui NIE ; Jin Ping PENG ; Xiao Ya GAO ; Hong Liang WU ; Hao Qing ZHANG ; Li QIU ; Zong Hui FENG ; Shu Yuan WANG ; Shu Xiang ZHOU ; Jun HE ; Shi Hao ZHOU ; Fa Qun ZHOU ; Jun Qing ZHENG ; Shun Yao WANG ; Shi Ping CHEN ; Zhi Fen ZHENG ; Xiao Yuan MA ; Jun Qun FANG ; Chang Biao LIANG ; Hua WANG
Biomedical and Environmental Sciences 2023;36(2):127-134
OBJECTIVE:
This study was aimed at investigating the carrier rate of, and molecular variation in, α- and β-globin gene mutations in Hunan Province.
METHODS:
We recruited 25,946 individuals attending premarital screening from 42 districts and counties in all 14 cities of Hunan Province. Hematological screening was performed, and molecular parameters were assessed.
RESULTS:
The overall carrier rate of thalassemia was 7.1%, including 4.83% for α-thalassemia, 2.15% for β-thalassemia, and 0.12% for both α- and β-thalassemia. The highest carrier rate of thalassemia was in Yongzhou (14.57%). The most abundant genotype of α-thalassemia and β-thalassemia was -α 3.7/αα (50.23%) and β IVS-II-654/β N (28.23%), respectively. Four α-globin mutations [CD108 (ACC>AAC), CAP +29 (G>C), Hb Agrinio and Hb Cervantes] and six β-globin mutations [CAP +8 (C>T), IVS-II-848 (C>T), -56 (G>C), beta nt-77 (G>C), codon 20/21 (-TGGA) and Hb Knossos] had not previously been identified in China. Furthermore, this study provides the first report of the carrier rates of abnormal hemoglobin variants and α-globin triplication in Hunan Province, which were 0.49% and 1.99%, respectively.
CONCLUSION
Our study demonstrates the high complexity and diversity of thalassemia gene mutations in the Hunan population. The results should facilitate genetic counselling and the prevention of severe thalassemia in this region.
Humans
;
beta-Thalassemia/genetics*
;
alpha-Thalassemia/genetics*
;
Hemoglobinopathies/genetics*
;
China/epidemiology*
;
High-Throughput Nucleotide Sequencing
7.Observational study on perioperative outcomes of pelvic exenteration.
Hao YUAN ; Bing YAO ; Jun Tao LI ; Wen Liang ZHU ; Dong Lin REN ; Hui WANG ; Teng Hui MA ; Shu Qin CHEN ; Jian Jian WU ; Yi Ran TAO ; Lei YE ; Zhong Yang WANG ; Hu QU ; Bo MA ; Wen Wen ZHONG ; De Juan WANG ; Jian Guang QIU
Chinese Journal of Gastrointestinal Surgery 2023;26(3):260-267
Objective: To investigate the surgical indications and perioperative clinical outcomes of pelvic exenteration (PE) for locally advanced, recurrent pelvic malignancies and complex pelvic fistulas. Methods: This was a descriptive study.The indications for performing PE were: (1) locally advanced, recurrent pelvic malignancy or complex pelvic fistula diagnosed preoperatively by imaging and pathological examination of a biopsy; (2)preoperative agreement by a multi-disciplinary team that non-surgical and conventional surgical treatment had failed and PE was required; and (3) findings on intraoperative exploration confirming this conclusion.Contraindications to this surgical procedure comprised cardiac and respiratory dysfunction, poor nutritional status,and mental state too poor to tolerate the procedure.Clinical data of 141 patients who met the above criteria, had undergone PE in the Sixth Affiliated Hospital of Sun Yat-sen University from January 2018 to September 2022, had complete perioperative clinical data, and had given written informed consent to the procedure were collected,and the operation,relevant perioperative variables, postoperative pathological findings (curative resection), and early postoperative complications were analyzed. Results: Of the 141 included patients, 43 (30.5%) had primary malignancies, 61 (43.3%) recurrent malignancies, 28 (19.9%) complex fistulas after radical resection of malignancies,and nine (6.4%)complex fistulas caused by benign disease. There were 79 cases (56.0%) of gastrointestinal tumors, 30 cases (21.3%) of reproductive tumors, 16 cases (11.3%) of urinary tumors, and 7 cases (5.0%) of other tumors such mesenchymal tissue tumors. Among the 104 patients with primary and recurrent malignancies, 15 patients with severe complications of pelvic perineum of advanced tumors were planned to undergo palliative PE surgery for symptom relief after preoperative assessment of multidisciplinary team; the other 89 patients were evaluated for radical PE surgery. All surgeries were successfully completed. Total PE was performed on 73 patients (51.8%),anterior PE on 22 (15.6%),and posterior PE in 46 (32.6%). The median operative time was 576 (453,679) minutes, median intraoperative blood loss 500 (200, 1 200) ml, and median hospital stay 17 (13.0,30.5)days.There were no intraoperative deaths. Of the 89 patients evaluated for radical PE surgery, the radical R0 resection was achieved in 64 (71.9%) of them, R1 resection in 23 (25.8%), and R2 resection in two (2.2%). One or more postoperative complications occurred in 85 cases (60.3%), 32 (22.7%)of which were Clavien-Dindo grade III and above.One patient (0.7%)died during the perioperative period. Conclusion: PE is a valid option for treating locally advanced or recurrent pelvic malignancies and complex pelvic fistulas.
Humans
;
Pelvic Exenteration/methods*
;
Pelvic Neoplasms/surgery*
;
Retrospective Studies
;
Neoplasm Recurrence, Local/surgery*
;
Postoperative Complications
8.An evidence-based clinical guideline for the treatment of infectious bone defect with induced membrane technique (version 2023)
Jie SHEN ; Lin CHEN ; Shiwu DONG ; Jingshu FU ; Jianzhong GUAN ; Hongbo HE ; Chunli HOU ; Zhiyong HOU ; Gang LI ; Hang LI ; Fengxiang LIU ; Lei LIU ; Feng MA ; Tao NIE ; Chenghe QIN ; Jian SHI ; Hengsheng SHU ; Dong SUN ; Li SUN ; Guanglin WANG ; Xiaohua WANG ; Zhiqiang WANG ; Hongri WU ; Junchao XING ; Jianzhong XU ; Yongqing XU ; Dawei YANG ; Tengbo YU ; Zhi YUAN ; Wenming ZHANG ; Feng ZHAO ; Jiazhuang ZHENG ; Dapeng ZHOU ; Chen ZHU ; Yueliang ZHU ; Zhao XIE ; Xinbao WU ; Changqing ZHANG ; Peifu TANG ; Yingze ZHANG ; Fei LUO
Chinese Journal of Trauma 2023;39(2):107-120
Infectious bone defect is bone defect with infection or as a result of treatment of bone infection. It requires surgical intervention, and the treatment processes are complex and long, which include bone infection control,bone defect repair and even complex soft tissue reconstructions in some cases. Failure to achieve the goals in any step may lead to the failure of the overall treatment. Therefore, infectious bone defect has been a worldwide challenge in the field of orthopedics. Conventionally, sequestrectomy, bone grafting, bone transport, and systemic/local antibiotic treatment are standard therapies. Radical debridement remains one of the cornerstones for the management of bone infection. However, the scale of debridement and the timing and method of bone defect reconstruction remain controversial. With the clinical application of induced membrane technique, effective infection control and rapid bone reconstruction have been achieved in the management of infectious bone defect. The induced membrane technique has attracted more interests and attention, but the lack of understanding the basic principles of infection control and technical details may hamper the clinical outcomes of induced membrane technique and complications can possibly occur. Therefore, the Chinese Orthopedic Association organized domestic orthopedic experts to formulate An evidence-based clinical guideline for the treatment of infectious bone defect with induced membrane technique ( version 2023) according to the evidence-based method and put forward recommendations on infectious bone defect from the aspects of precise diagnosis, preoperative evaluation, operation procedure, postoperative management and rehabilitation, so as to provide useful references for the treatment of infectious bone defect with induced membrane technique.
9.Efficacy of quantitative parameters of dual-layer spectral detector CT in preoperative prediction of Ki-67 expression in esophageal squamous cell carcinoma
Shu XU ; Yueyan ZHANG ; Haotian WANG ; Dong MA ; Tao YU
Chinese Journal of Radiology 2023;57(8):855-860
Objective:To explore the efficacy of quantitative parameters of dual-layer spectral CT in preoperative prediction of Ki-67 expression in esophageal squamous cell carcinoma (ESCC).Methods:From December 2021 to December 2022, 64 patients with histopathologically diagnosed ESCC were retrospectively analyzed at Liaoning Cancer Hospital & Institute. The expression level of Ki-67 in ESCC tumor tissue was detected by the immunohistochemical method. The patients were divided into the Ki-67 high expression group (the Ki-67 expression index≥30%, 47 cases) and the Ki-67 low expression group (the Ki-67 expression index<30%, 17 cases). The quantitative parameters of spectral CT were measured, including traditional 120 kVp CT value, 40 keV CT value, iodine density (ID), normalized iodine density (NID), and Z-effective in arterial and venous phases. Independent sample t test was used to compare the differences in the parameters between the Ki-67 high and low expression groups. The receiver operating characteristic (ROC) curve was drawn to evaluate the efficacy of each parameter in predicting Ki-67 expression. DeLong test was used to compare the area under the curve (AUC). Results:The 120 kVp CT value, 40 keV CT value, ID, and Z-effective in the arterial phase and the 120 kVp CT value, 40 keV CT value, ID, NID, Z-effective in venous phase in the Ki-67 high expression group were all higher than those in the Ki-67 low expression group ( P<0.05). There was no statistically significant difference in arterial phase NID between the two groups ( t=1.85, P=0.070). NID in the venous phase had the highest AUC in predicting high expression of Ki-67 in ESCC (AUC=0.965, 95%CI 0.923-1.000). With a venous phase NID value of 0.28 as the diagnostic threshold, the sensitivity and specificity were 93.6% and 100%. There was no significant difference in AUC between venous phase NID and venous phase ID (AUC=0.926) and Z-effective (AUC=0.909) ( Z=-1.52, 1.81, P=0.128, 0.071), but there was a significant difference of AUC between venous phase NID and 120 kVp CT value (AUC=0.719) and 40 keV CT value (AUC=0.747) ( Z=3.41, 3.30, P=0.001, 0.001). There were statistical differences of AUC between venous phase NID and each parameter of arterial phase ( P<0.05). Conclusion:The three spectral CT parameters (ID, NID, and Z-effective) in the venous phase have high diagnostic efficacy in predicting ESCC Ki-67 expression.
10. Procyanidin B2 protects H
Yi-Wei DONG ; Zhi-Chao YANG ; Wei-Jia JIANG ; Jian-Chun LIU ; Wan-Fang YANG ; Shu-Wen YUAN ; Xiao-Hui LI ; Cun-Gen MA ; Qing WANG ; Bao-Guo XIAO
Chinese Pharmacological Bulletin 2023;39(9):1654-1661
Aim To explore the protective effect of proanthocyanidin B2 (PC-B2) on oxidative damage of PC 12 cells induced by hydrogen peroxide (H

Result Analysis
Print
Save
E-mail