1.Clinical observation of everolimus combined with letrozole and conventional chemotherapy for metastatic/recurrent endometrial carcinoma
Dongyan BAI ; Yu WU ; Shu ZHANG ; Yanrong WAN
China Pharmacy 2026;37(1):61-65
OBJECTIVE To evaluate the therapeutic effects and safety of everolimus combined with letrozole and conventional chemotherapy for metastatic or recurrent endometrial carcinoma (EC). METHODS The clinical and follow-up data of 156 patients with metastatic or recurrent EC admitted to Nanyang Central Hospital from January 2020 to January 2024 were analyzed retrospectively. They were divided into a control group (77 cases) and an observation group (79 cases) according to different therapeutic regimens. The control group received paclitaxel+carboplatin/cisplatin regimen, and concurrently took Letrozole tablets at a dose of 2.5 mg orally once daily; the observation group took Everolimus tablets 10 mg orally, once a day, in addition to the treatment regimen given to the control group. Each treatment cycle lasted 21 days, and both groups of patients underwent continuous treatment for 6 to 8 cycles. The short-term efficacy indicators (objective response rate and disease control rate), the levels of serum tumor markers [carbohydrate antigen 125, human epididymis protein 4, vascular endothelial growth factor and matrix metalloproteinase-9] and medium- to long-term efficacy indicators [progression-free survival (PFS) and overall survival (OS)] were compared between the two groups. Additionally, the occurrence of toxic and side effects in both groups of patients was recorded. RESULTS The objective response rate (53.16%), disease control rate (89.87%), median PFS (6.47 months) and median OS (10.79 months) of the observation group were significantly higher or longer than those (22.08%, 68.83%, 4.63 months, 8.84 months) of the control group (P<0.05). Compared with before treatment, the levels of serum tumor markers in both groups decreased significantly after 6 cycles of treatment; the above indexes of the observation group were significantly lower than those of the control group (P<0.05). The proportion of patients with stomatitis in the observation group was significantly higher than that of the control group (P<0.05), and there was no statistically significant difference in the proportions of patients experiencing other toxic and side effects, such as leukopenia, between the two groups (P>0.05). CONCLUSIONS The everolimus combined with letrozole and conventional chemotherapy can effectively improve the short-term efficacy and prolong the survival period in patients with metastatic or recurrent EC, but attention should be paid to the occurrence of toxic and side effects, especially stomatitis.
2.Microscopic Mechanism of Chronic Liver Disease and Novel Thinking of Medicine Management Based on Theory of "Yang Transforming Qi While Yin Constituting Form-sweat Pore"
Yuying XU ; Changpu ZHAO ; Rongzhi LI ; Yu ZHANG ; Fei WANG ; Chenyuan HAO ; Guangjie SHU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):244-255
The theory of "Yang transforming Qi while Yin constituting form" in the Huangdi's Internal Classic is derived from the application, transformation, movement, and balance of Tao. It is highly condensed, revealing the true meaning of Tao and guiding the changes and progress of all natural things, including diseases. Therefore, the appearance of various physical diseases is the manifestation of Yin-Yang Qi transformation. Sweat pore, formed by the Qi transformation of Yin and Yang, is the nourishing and regulating system. It serves as the hub and channel, assisting in the flow and transformation of Qi, facilitating the exchange of material, energy, and information with the outside world. With sweat pore as the hub and based on the macro-control and holistic thinking of "Yang transforming Qi while Yin constituting form", this paper explores the microscopic mechanisms underlying chronic liver disease. In combination with the roles of mitochondria, exosomes, and the ultraliver sieve structure in the formation and progression of chronic liver disease, this paper elucidates the close internal relationship between the disease's initial quality, symptom signs, and its physiological and pathological functions under the guidance of this theory. Modern studies have shown that autophagy, intestinal flora disorders, glucose and lipid metabolism disturbances, activation of inflammatory factors, ferroptosis, and other microscopic pathological mechanisms are involved in the occurrence and development of chronic liver disease. The common connotation of the Yin-Yang concept in traditional Chinese medicine (TCM) and the pathological mechanisms in modern medicine is deeply analyzed. The corresponding relevant microscopic mechanisms and the guiding role of the theory of "Yang transforming Qi while Yin constituting form-sweat pore" in the management of chronic liver disease are summarized. Wind medicine promotes growth and transformation through sweat pore. The combination of pungent and sweet medicines facilitates Yang and disperse Yin. The formulas, combining the characteristics of wind medicine and pungent and sweet medicines, fit the principle of "Yang transforming Qi while Yin constituting form-sweat pore". This paper combines both macro and micro perspectives to explain the scientific connotation and microscopic mechanisms of chronic liver disease based on the theory of "Yang transforming Qi while Yin constituting form-sweat pore", and explore the prevention and treatment of chronic liver disease through the principles, methods, prescriptions, and medicines featured by combination of pungent and sweet medicines, facilitating Yang, activating sweat pore, and dispersing Yin, providing new ideas and reference for the clinical treatment of chronic liver disease.
3.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
4.Five-year outcomes of metabolic surgery in Chinese subjects with type 2 diabetes.
Yuqian BAO ; Hui LIANG ; Pin ZHANG ; Cunchuan WANG ; Tao JIANG ; Nengwei ZHANG ; Jiangfan ZHU ; Haoyong YU ; Junfeng HAN ; Yinfang TU ; Shibo LIN ; Hongwei ZHANG ; Wah YANG ; Jingge YANG ; Shu CHEN ; Qing FAN ; Yingzhang MA ; Chiye MA ; Jason R WAGGONER ; Allison L TOKARSKI ; Linda LIN ; Natalie C EDWARDS ; Tengfei YANG ; Rongrong ZHANG ; Weiping JIA
Chinese Medical Journal 2025;138(4):493-495
5.Risk prediction of Reduning Injection batches by near-infrared spectroscopy combined with multiple machine learning algorithms.
Wen-Yu JIA ; Feng TONG ; Heng-Xu LIU ; Shu-Qin JIN ; Yong-Chao ZHANG ; Chen-Feng ZHANG ; Zhen-Zhong WANG ; Xin ZHANG ; Wei XIAO
China Journal of Chinese Materia Medica 2025;50(2):430-438
In this paper, near-infrared spectroscopy(NIRS) was employed to analyze 129 batches of commercial products of Reduning Injection. The batch reporting rate was estimated according to the report of Reduning Injection in the direct adverse drug reaction(ADR) reporting system of the drug marketing authorization holder of the Center for Drug Reevaluation of the National Medical Products Administration(National Center for ADR Monitoring) from August 2021 to August 2022. According to the batch reporting rate, the samples of Reduning Injection were classified into those with potential risks and those being safe. No processing, random oversampling(ROS), random undersampling(RUS), and synthetic minority over-sampling technique(SMOTE) were then employed to balance the unbalanced data. After the samples were classified according to appropriate sampling methods, competitive adaptive reweighted sampling(CARS), successive projections algorithm(SPA), uninformative variables elimination(UVE), and genetic algorithm(GA) were respectively adopted to screen the features of spectral data. Then, support vector machine(SVM), logistic regression(LR), k-nearest neighbors(KNN), naive bayes(NB), random forest(RF), and artificial neural network(ANN) were adopted to establish the risk prediction models. The effects of the four feature extraction methods on the accuracy of the models were compared. The optimal method was selected, and bayesian optimization was performned to optimize the model parameters to improve the accuracy and robustness of model prediction. To explore the correlations between potential risks of clinical use and quality test data, TreeNet was employed to identify potential quality parameters affecting the clinical safety of Reduning Injection. The results showed that the models established with the SVM, LR, KNN, NB, RF, and ANN algorithms had the F1 scores of 0.85, 0.85, 0.86, 0.80, 0.88, and 0.85 and the accuracy of 88%, 88%, 88%, 85%, 91%, and 88%, respectively, and the prediction time was less than 5 s. The results indicated that the established models were accurate and efficient. Therefore, near infrared spectroscopy combined with machine learning algorithms can quickly predict the potential risks of clinical use of Reduning Injection in batches. Three key quality parameters that may affect clinical safety were identified by TreeNet, which provided a scientific basis for improving the safety standards of Reduning Injection.
Spectroscopy, Near-Infrared/methods*
;
Drugs, Chinese Herbal/administration & dosage*
;
Machine Learning
;
Algorithms
;
Humans
;
Quality Control
6.Drying kinetics of Salviae Miltiorrhizae Radix et Rhizoma and dynamics of active components in drying process.
Yu-Qin LI ; Xiu-Xiu SHA ; Zhe ZHANG ; Shu-Lan SU ; Liang NI ; Sheng GUO ; Hui YAN ; Da-Wei QIAN ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2025;50(1):128-139
This study explored the drying kinetics of Salviae Miltiorrhizae Radix et Rhizoma(SM), established the suitable models simulating the drying kinetics, and then analyzed the dynamic changes of active components during the drying processes with different methods, aiming to provide a basis for the establishment of suitable drying methods and the quality control of SM. The drying kinetics were studied based on the drying curve, drying rate, moisture effective diffusion coefficient, and drying activation energy, and the appropriate drying kinetics model of SM was established. The drying performance of different methods, such as hot air drying, infrared drying, and microwave drying of SM was evaluated, and the changes in the content of 10 salvianolic acids and 6 tanshinones during drying were analyzed by UPLC-TQ-MS. The Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS) was employed to evaluate the quality of SM dried with different methods. The results showed that the drying rate and moisture effective diffusion coefficient of SM increased with the rise in drying temperature, and the maximum drying rates of different methods were in the order of microwave drying > infrared drying > hot air drying, slice > whole root. The drying rate decreased with the rise in temperature and the extension of drying time. The activation energy of hot air drying was higher than that of infrared drying in SM. The most suitable model for simulating the drying process of SM was the Page model. The TOPSIS results suggested infrared drying at 50 ℃ was the optimal drying method for SM. During the drying process, the content of salvianolic acids increased in different degrees with the loss of moisture, among which salvianolic acid B showed the largest increase of 44 times compared with that in the fresh medicinal material. Tanshinones also existed in the fresh herb of SM, and the content of tanshinone Ⅱ_A increased by 3 times after drying. The results provided a basis for the establishment of suitable drying methods and the quality control of SM.
Salvia miltiorrhiza/chemistry*
;
Desiccation/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Rhizome/chemistry*
;
Kinetics
;
Quality Control
;
Abietanes
7.Synergistic neuroprotective effects of main components of salvianolic acids for injection based on key pathological modules of cerebral ischemia.
Si-Yu TAN ; Ya-Xu WU ; Zi-Shu YAN ; Ai-Chun JU ; De-Kun LI ; Peng-Wei ZHUANG ; Yan-Jun ZHANG ; Hong GUO
China Journal of Chinese Materia Medica 2025;50(3):693-701
This study aims to explore the synergistic effects of the main components in salvianolic acids for Injection(SAFI) on key pathological events in cerebral ischemia, elucidating the pharmacological characteristics of SAFI in neuroprotection. Two major pathological gene modules related to endothelial injury and neuroinflammation in cerebral ischemia were mined from single-cell data. According to the topological distance calculated in network medicine, potential synergistic component combinations of SAFI were screened out. The results showed that the combination of caffeic acid and salvianolic acid B scored the highest in addressing both endothelial injury and neuroinflammation, demonstrating potential synergistic effects. The cell experiments confirmed that the combination of these two components at a ratio of 1∶1 significantly protected brain microvascular endothelial cells(bEnd.3) from oxygen-glucose deprivation/reoxygenation(OGD/R)-induced reperfusion injury and effectively suppressed lipopolysaccharide(LPS)-induced neuroinflammatory responses in microglial cells(BV-2). This study provides a new method for uncovering synergistic effects among active components in traditional Chinese medicine(TCM) and offers novel insights into the multi-component, multi-target acting mechanisms of TCM.
Brain Ischemia/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Benzofurans/pharmacology*
;
Mice
;
Drug Synergism
;
Caffeic Acids/pharmacology*
;
Polyphenols/pharmacology*
;
Humans
;
Alkenes/pharmacology*
;
Endothelial Cells/drug effects*
;
Depsides
8.Integration and innovation of wet granulation and continuous manufacturing technology: a review of on-line detection, modeling, and process scale-up.
Guang-di YANG ; Ge AO ; Yang CHEN ; Yu-Fang HUANG ; Shu CHEN ; Dong-Xun LI ; Wen-Liu ZHANG ; Tian-Tian WANG ; Guo-Song ZHANG
China Journal of Chinese Materia Medica 2025;50(6):1484-1495
Continuous manufacturing, as an innovative pharmaceutical production model, offers advantages such as high production efficiency and ease of control compared to traditional batch production, aligning with the future trend of drug production moving toward greater efficiency and intelligence. However, the development of continuous manufacturing technology in wet granulation has been slow. On one hand, this is closely related to its high technical complexity, substantial equipment investment costs, and stringent process control requirements. On the other hand, the long-term use of the traditional batch production model has created strong path dependence, and the lack of mature standardized processes further increases the difficulty of technological transformation. To promote the deep integration of wet granulation technology with continuous manufacturing, this review systematically outlines the current application of wet granulation in continuous manufacturing. It focuses on the development of key technologies such as online detection, process modeling, and process scale-up, with the aim of providing a reference for process innovation and application in wet granulation.
Drug Compounding/instrumentation*
;
Technology, Pharmaceutical/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Models, Theoretical
9.Biomarkers of hepatotoxicity in rats induced by aqueous extract of Dictamni Cortex based on urine metabolomics.
Hui-Juan SUN ; Rui GAO ; Meng-Meng ZHANG ; Ge-Yu DENG ; Lin HUANG ; Zhen-Dong ZHANG ; Yu WANG ; Fang LU ; Shu-Min LIU
China Journal of Chinese Materia Medica 2025;50(9):2526-2538
This paper aimed to use non-targeted urine metabolomics to reveal the potential biomarkers of toxicity in rats with hepatic injury induced by aqueous extracts of Dictamni Cortex(ADC). Forty-eight SD rats were randomly assigned to a blank group and high-dose, medium-dose, and low-dose ADC groups, with 12 rats in each group(half male and half female), and they were administered orally for four weeks. The hepatic injury in SD rats was assessed by body weight, liver weight/index, biochemical index, L-glutathione(GSH), malondialdehyde(MDA), and pathological alterations. The qPCR was utilized to determine the expression of metabolic enzymes in the liver and inflammatory factors. Differential metabolites were screened using principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA), followed by a metabolic pathway analysis. The Mantel test was performed to assess differential metabolites and abnormally expressed biochemical indexes, obtaining potential biomarkers. The high-dose ADC group showed a decrease in body weight and an increase in liver weight and index, resulting in hepatic inflammatory cell infiltration and hepatic steatosis. In addition, this group showed elevated levels of MDA, cytochrome P450(CYP) 3A1, interleukin-1β(IL-1β), and tumor necrosis factor-α(TNF-α), as well as lower levels of alanine transaminase(ALT) and GSH. A total of 76 differential metabolites were screened from the blank and high-dose ADC groups, which were mainly involved in the pentose phosphate pathway, tryptophan metabolism, purine metabolism, pentose and glucuronic acid interconversion, galactose metabolism, glutathione metabolism, and other pathways. The Mantel test identified biomarkers of hepatotoxicity induced by ADC in SD rats, including glycineamideribotide, dIDP, and galactosylglycerol. In summary, ADC induced hepatotoxicity by disrupting glucose metabolism, ferroptosis, purine metabolism, and other pathways in rats, and glycineamideribotide, dIDP, and galactosylglycerol could be employed as the biomarkers of its toxicity.
Animals
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Metabolomics
;
Biomarkers/metabolism*
;
Liver/metabolism*
;
Drugs, Chinese Herbal/adverse effects*
;
Female
;
Chemical and Drug Induced Liver Injury/metabolism*
;
Glutathione/metabolism*
;
Humans
10.Alleviation of hypoxia/reoxygenation injury in HL-1 cells by ginsenoside Rg_1 via regulating mitochondrial fusion based on Notch1 signaling pathway.
Hui-Yu ZHANG ; Xiao-Shan CUI ; Yuan-Yuan CHEN ; Gao-Jie XIN ; Ce CAO ; Zi-Xin LIU ; Shu-Juan XU ; Jia-Ming GAO ; Hao GUO ; Jian-Hua FU
China Journal of Chinese Materia Medica 2025;50(10):2711-2718
This paper explored the specific mechanism of ginsenoside Rg_1 in regulating mitochondrial fusion through the neurogenic gene Notch homologous protein 1(Notch1) pathway to alleviate hypoxia/reoxygenation(H/R) injury in HL-1 cells. The relative viability of HL-1 cells after six hours of hypoxia and two hours of reoxygenation was detected by cell counting kit-8(CCK-8). The lactate dehydrogenase(LDH) activity in the cell supernatant was detected by the lactate substrate method. The content of adenosine triphosphate(ATP) was detected by the luciferin method. Fluorescence probes were used to detect intracellular reactive oxygen species(Cyto-ROS) levels and mitochondrial membrane potential(ΔΨ_m). Mito-Tracker and Actin were co-imaged to detect the number of mitochondria in cells. Fluorescence quantitative polymerase chain reaction and Western blot were used to detect the mRNA and protein expression levels of Notch1, mitochondrial fusion protein 2(Mfn2), and mitochondrial fusion protein 1(Mfn1). The results showed that compared with that of the control group, the cell activity of the model group decreased, and the LDH released into the cell culture supernatant increased. The level of Cyto-ROS increased, and the content of ATP decreased. Compared with that of the model group, the cell activity of the ginsenoside Rg_1 group increased, and the LDH released into the cell culture supernatant decreased. The level of Cyto-ROS decreased, and the ATP content increased. Ginsenoside Rg_1 elevated ΔΨ_m and increased mitochondrial quantity in HL-1 cells with H/R injury and had good protection for mitochondria. After H/R injury, the mRNA and protein expression levels of Notch1 and Mfn1 decreased, while the mRNA and protein expression levels of Mfn2 increased. Ginsenoside Rg_1 increased the mRNA and protein levels of Notch1 and Mfn1, and decreased the mRNA and protein levels of Mfn2. Silencing Notch1 inhibited the action of ginsenoside Rg_1, decreased the mRNA and protein levels of Notch1 and Mfn1, and increased the mRNA and protein levels of Mfn2. In summary, ginsenoside Rg_1 regulated mitochondrial fusion through the Notch1 pathway to alleviate H/R injury in HL-1 cells.
Ginsenosides/pharmacology*
;
Receptor, Notch1/genetics*
;
Signal Transduction/drug effects*
;
Mice
;
Animals
;
Mitochondrial Dynamics/drug effects*
;
Mitochondria/metabolism*
;
Cell Line
;
Reactive Oxygen Species/metabolism*
;
Oxygen/metabolism*
;
Cell Hypoxia/drug effects*
;
Cell Survival/drug effects*
;
Membrane Potential, Mitochondrial/drug effects*
;
Humans

Result Analysis
Print
Save
E-mail