1.Early predictors of rescue therapy and colectomy in acute severe ulcerative colitis.
Samuel Jun Ming LIM ; Kaina CHEN ; Yi Yuan TAN ; Shu Wen TAY ; Thomson Chong Teik LIM ; Ennaliza SALAZAR ; Webber Pak-Wo CHAN ; Malcolm Teck Kiang TAN
Singapore medical journal 2025;66(8):449-456
INTRODUCTION:
Acute severe ulcerative colitis (ASUC) is a significant cause of disease morbidity. One-third of patients with ASUC are steroid refractory. Rescue therapy may not successfully induce remission, necessitating colectomy. We aimed to identify predictors of rescue therapy and colectomy in ASUC assessed within 24 h of admission for early risk stratification.
METHODS:
We conducted a retrospective cohort study of 58 admissions for ASUC among 47 patients from August 2002 to January 2022. Serum biomarkers assessed were measured on admission. Primary outcomes were the need for rescue therapy during the same admission and colectomy within 1 year of admission.
RESULTS:
Rescue therapy (all with infliximab) was given in 20 (34.5%) of the admissions. Colectomy was done within 1 year for nine (15.5%) of the admissions. An elevated C-reactive protein (CRP) of >30 mg/L (relative risk [RR] 1.63), a CRP-albumin ratio of >0.85 (RR 1.63), and a composite factor of both CRP > 30 mg/L and age ≥60 years (RR 2.37) were significantly associated with the need for rescue therapy. Hypoalbuminaemia ≤ 25 g/L (RR 4.35) and the use of biologics at presentation (RR 1.54) were significantly associated with colectomy within 1 year of admission, while a CRP of ≥ 80 mg/L was a significant protective factor (RR 0.70).
CONCLUSION
Patients with ASUC who have elevated CRP or CRP-albumin ratio on admission should be considered at risk for steroid-refractory disease. Those with hypoalbuminaemia on admission and using biologics at presentation are more likely to require colectomy in the first year after admission for ASUC.
Humans
;
Colitis, Ulcerative/therapy*
;
Colectomy
;
Retrospective Studies
;
Male
;
Female
;
Middle Aged
;
Adult
;
C-Reactive Protein/metabolism*
;
Infliximab/therapeutic use*
;
Biomarkers/blood*
;
Acute Disease
;
Aged
;
Severity of Illness Index
;
Treatment Outcome
2.Risk prediction of Reduning Injection batches by near-infrared spectroscopy combined with multiple machine learning algorithms.
Wen-Yu JIA ; Feng TONG ; Heng-Xu LIU ; Shu-Qin JIN ; Yong-Chao ZHANG ; Chen-Feng ZHANG ; Zhen-Zhong WANG ; Xin ZHANG ; Wei XIAO
China Journal of Chinese Materia Medica 2025;50(2):430-438
In this paper, near-infrared spectroscopy(NIRS) was employed to analyze 129 batches of commercial products of Reduning Injection. The batch reporting rate was estimated according to the report of Reduning Injection in the direct adverse drug reaction(ADR) reporting system of the drug marketing authorization holder of the Center for Drug Reevaluation of the National Medical Products Administration(National Center for ADR Monitoring) from August 2021 to August 2022. According to the batch reporting rate, the samples of Reduning Injection were classified into those with potential risks and those being safe. No processing, random oversampling(ROS), random undersampling(RUS), and synthetic minority over-sampling technique(SMOTE) were then employed to balance the unbalanced data. After the samples were classified according to appropriate sampling methods, competitive adaptive reweighted sampling(CARS), successive projections algorithm(SPA), uninformative variables elimination(UVE), and genetic algorithm(GA) were respectively adopted to screen the features of spectral data. Then, support vector machine(SVM), logistic regression(LR), k-nearest neighbors(KNN), naive bayes(NB), random forest(RF), and artificial neural network(ANN) were adopted to establish the risk prediction models. The effects of the four feature extraction methods on the accuracy of the models were compared. The optimal method was selected, and bayesian optimization was performned to optimize the model parameters to improve the accuracy and robustness of model prediction. To explore the correlations between potential risks of clinical use and quality test data, TreeNet was employed to identify potential quality parameters affecting the clinical safety of Reduning Injection. The results showed that the models established with the SVM, LR, KNN, NB, RF, and ANN algorithms had the F1 scores of 0.85, 0.85, 0.86, 0.80, 0.88, and 0.85 and the accuracy of 88%, 88%, 88%, 85%, 91%, and 88%, respectively, and the prediction time was less than 5 s. The results indicated that the established models were accurate and efficient. Therefore, near infrared spectroscopy combined with machine learning algorithms can quickly predict the potential risks of clinical use of Reduning Injection in batches. Three key quality parameters that may affect clinical safety were identified by TreeNet, which provided a scientific basis for improving the safety standards of Reduning Injection.
Spectroscopy, Near-Infrared/methods*
;
Drugs, Chinese Herbal/administration & dosage*
;
Machine Learning
;
Algorithms
;
Humans
;
Quality Control
3.Integration and innovation of wet granulation and continuous manufacturing technology: a review of on-line detection, modeling, and process scale-up.
Guang-di YANG ; Ge AO ; Yang CHEN ; Yu-Fang HUANG ; Shu CHEN ; Dong-Xun LI ; Wen-Liu ZHANG ; Tian-Tian WANG ; Guo-Song ZHANG
China Journal of Chinese Materia Medica 2025;50(6):1484-1495
Continuous manufacturing, as an innovative pharmaceutical production model, offers advantages such as high production efficiency and ease of control compared to traditional batch production, aligning with the future trend of drug production moving toward greater efficiency and intelligence. However, the development of continuous manufacturing technology in wet granulation has been slow. On one hand, this is closely related to its high technical complexity, substantial equipment investment costs, and stringent process control requirements. On the other hand, the long-term use of the traditional batch production model has created strong path dependence, and the lack of mature standardized processes further increases the difficulty of technological transformation. To promote the deep integration of wet granulation technology with continuous manufacturing, this review systematically outlines the current application of wet granulation in continuous manufacturing. It focuses on the development of key technologies such as online detection, process modeling, and process scale-up, with the aim of providing a reference for process innovation and application in wet granulation.
Drug Compounding/instrumentation*
;
Technology, Pharmaceutical/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Models, Theoretical
4.Research progress on pharmacological effects and mechanism of α-asarone and β-asarone in Acori Tatarinowii Rhizoma.
Hao WANG ; Lei GAO ; Jin-Lian ZHANG ; Ling-Yun ZHONG ; Shu-Han JIN ; Xiao-Yan CHEN ; Wen ZHANG ; Jia-Wen WEN
China Journal of Chinese Materia Medica 2025;50(9):2305-2316
Acori Tatarinowii Rhizoma is the dried rhizome of Acorus tatarinowii in the family of Tennantiaceae, which has the efficacy of opening up the orifices and expelling phlegm, awakening the mind and wisdom, and resolving dampness and opening up the stomach. Modern studies have shown that volatile oil is the main active ingredient of Acori Tatarinowii Rhizoma, and α-asarone and β-asarone have been proved to be the active ingredients in the volatile oil of Acori Tatarinowii Rhizoma, with pharmacological effects such as anti-Alzheimer's disease, antiepileptic, anti-Parkinson's disease, antidepressant, anticerebral ischemia/reperfusion injury, anti-thrombosis, lipid-lowering, and antitumor. By summarising and outlining the pharmacological effects of α-asarone and β-asarone and elucidating the possible mechanisms of their pharmacological effects, we can provide theoretical basis for the further research and clinical application of Acori Tatarinowii Rhizoma.
Allylbenzene Derivatives
;
Acorus/chemistry*
;
Anisoles/chemistry*
;
Rhizome/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Animals
5.Research progress on molecular mechanisms of ginsenosides in alleviating acute lung injury.
Han-Yang ZHAO ; Xun-Jiang WANG ; Qiong-Wen XUE ; Bao-Lian XU ; Xu WANG ; Shu-Sheng LAI ; Ming CHEN ; Li YANG ; Zheng-Tao WANG ; Li-Li DING
China Journal of Chinese Materia Medica 2025;50(16):4451-4470
Acute lung injury(ALI) is a critical clinical condition primarily characterized by refractory hypoxemia and infiltration of inflammatory cells in lung tissue, which can progress into a more severe form known as acute respiratory distress syndrome(ARDS). Immune cells and inflammatory cytokines play important roles in the progression of the disease. Due to its unclear pathogenesis and the lack of effective clinical treatments, ALI is associated with a high mortality rate and severely affects patients' quality of life, making the search for effective therapeutic agents particularly urgent. Ginseng Radix et Rhizoma, the dried root of the perennial herb Panax ginseng from the Araliaceae family, contains active ingredients such as saponins and polysaccharides, which possess various pharmacological effects including anti-tumor activity, immune regulation, and metabolic modulation. In recent years, studies have shown that ginsenosides exhibit notable effects in reducing inflammation, ameliorating epithelial and endothelial cell injury, and providing anticoagulant action, indicating their comprehensive role in alleviating lung injury. This review summarizes the pathogenesis of ALI and the molecular mechanisms through which ginsenosides act at different stages of ALI development. The aim is to provide a scientific reference for the development of ginsenoside-based drugs targeting ALI, as well as a theoretical basis for the clinical application of Ginseng Radix et Rhizoma in the treatment of ALI.
Ginsenosides/pharmacology*
;
Humans
;
Acute Lung Injury/immunology*
;
Animals
;
Panax/chemistry*
;
Drugs, Chinese Herbal
6.Study on Pre-Clinical In-Vitro Test Methods of Unicondylar Knee Prosthesis.
Shu YANG ; Dan HAN ; Wen CUI ; Zhenxian CHEN ; Jinju DING ; Jintao GAO ; Bin LIU
Chinese Journal of Medical Instrumentation 2025;49(1):111-118
Compared with total knee arthroplasty, unicondylar knee replacement has the advantage of preserving the knee tissue structure and motor function to the greatest extent. Pre-clinical in-vitro test is an important tool to evaluate the safety and effectiveness of unicondylar knee prostheses, and it is also a key focus of the product registration process. Through collection, comparison, and analysis of current regulations, technical standards, guidelines, and related research literature, this paper expounds on the relevant research methods for the pre-clinical in-vitrotesting of unicondylar knee prostheses. At the same time, in conjunction with current evaluation requirements and experience, the study discusses the focus of pre-clinical performance research for unicondylar knee prostheses during the registration process to clarify the performance evaluation requirements of this product category. This aims to provide a reference for the pre-clinical performance research of unicondylar knee prostheses and to standardize industry testing standards.
Knee Prosthesis
;
Arthroplasty, Replacement, Knee
;
Humans
;
Prosthesis Design
;
Materials Testing
7.Chrysophanol Induces Cell Death and Inhibits Invasiveness through Alteration of Calcium Levels in HepG2 Human Liver Cancer Cells.
Shu-Chao CHEN ; Qiao-Wen CHEN ; Chih-Yuan KO
Chinese journal of integrative medicine 2025;31(5):434-440
OBJECTIVE:
To investigate the effect of chrysophanol, a phytochemical derived from Radix et Rhizoma Rhei on HepG2 liver cancer cells.
METHODS:
HepG2 cell line was treated with different concentrations chrysophanol (0-100 μmol/L) for 24 h. The cell counting kit 8 assay was employed to assess cell viability. Intracellular calcium levels were examined using Fluo-4 AM and Mag-fluo-4 AM staining, followed by flow cytometry analysis. Mitochondrial membrane potential was measured with JC-1 assay kit. Additionally, the expressions of key proteins such as p-JNK, Bax, cytochrome c (Cyt C), cleaved caspase-3 (cCaspase-3), and caspase-8 were analyzed by Western blot. The inhibitory effects of chrysophanol on the invasion of cells were determined using a Transwell assay. Analysis of invasiveness was conducted by wound healing assay.
RESULTS:
Chrysophanol significantly reduced the proliferation of HepG2 liver cancer cells by affecting intracellular calcium distribution, diminishing mitochondrial membrane potential, and enhancing the expressions of p-JNK, Bax, Cyt C, cCaspase-3, and caspase-8 in the groups treated with 75 or 100 μmol/L chrysophanol compared to the control group (P<0.05). Additionally, 75 and 100 μmol/L chrysophanol exhibited inhibitory effects on cell migration and wound healing.
CONCLUSION
Chrysophanol demonstrates potential against HepG2 liver cancer cells, suggesting its potential use as a therapeutic agent for liver cancer treatment.
Humans
;
Calcium/metabolism*
;
Hep G2 Cells
;
Liver Neoplasms/metabolism*
;
Neoplasm Invasiveness
;
Membrane Potential, Mitochondrial/drug effects*
;
Anthraquinones/pharmacology*
;
Cell Proliferation/drug effects*
;
Cell Death/drug effects*
;
Apoptosis/drug effects*
;
Cell Movement/drug effects*
;
Cell Survival/drug effects*
9.RBM14 enhances transcriptional activity of p23 regulating CXCL1 expression to induce lung cancer metastasis.
Wen ZHANG ; Yulin PENG ; Meirong ZHOU ; Lei QIAN ; Yilin CHE ; Junlin CHEN ; Wenhao ZHANG ; Chengjian HE ; Minghang QI ; Xiaohong SHU ; Manman TIAN ; Xiangge TIAN ; Yan TIAN ; Sa DENG ; Yan WANG ; Xiaokui HUO ; Zhenlong YU ; Xiaochi MA
Acta Pharmaceutica Sinica B 2025;15(6):3059-3072
Metastasis serves as an indicator of malignancy and is a biological characteristic of carcinomas. Epithelial-mesenchymal transition (EMT) plays a key role in the promotion of tumor invasion and metastasis and in the enhancement of tumor cell aggressiveness. Prostaglandin E synthase 3 (p23) is a cochaperone for heat shock protein 90 (HSP90). Our previous study showed that p23 is an HSP90-independent transcription factor in cancer-associated inflammation. The effect and mechanism of action of p23 on lung cancer metastasis are tested in this study. By utilizing cell models in vitro and mouse tail vein metastasis models in vivo, the results provide solid evidence that p23 is critical for promoting lung cancer metastases by regulating downstream CXCL1 expression. Rather than acting independently, p23 forms a complex with RNA-binding motif protein 14 (RBM14) to facilitate EMT progression in lung cancer. Therefore, our study provides evidence for the potential role of the RBM14-p23-CXCL1-EMT axis in the metastasis of lung cancer.
10.Comprehensive Analysis of Oncogenic, Prognostic, and Immunological Roles of FANCD2 in Hepatocellular Carcinoma: A Potential Predictor for Survival and Immunotherapy.
Meng Jiao XU ; Wen DENG ; Ting Ting JIANG ; Shi Yu WANG ; Ru Yu LIU ; Min CHANG ; Shu Ling WU ; Ge SHEN ; Xiao Xue CHEN ; Yuan Jiao GAO ; Hongxiao HAO ; Lei Ping HU ; Lu ZHANG ; Yao LU ; Wei YI ; Yao XIE ; Ming Hui LI
Biomedical and Environmental Sciences 2025;38(3):313-327
OBJECTIVE:
Hepatocellular carcinoma (HCC) is sensitive to ferroptosis, a new form of programmed cell death that occurs in most tumor types. However, the mechanism through which ferroptosis modulates HCC remains unclear. This study aimed to investigate the oncogenic role and prognostic value of FANCD2 and provide novel insights into the prognostic assessment and prediction of immunotherapy.
METHODS:
Using clinicopathological parameters and bioinformatic techniques, we comprehensively examined the expression of FANCD2 macroscopically and microcosmically. We conducted univariate and multivariate Cox regression analyses to identify the prognostic value of FANCD2 in HCC and elucidated the detailed molecular mechanisms underlying the involvement of FANCD2 in oncogenesis by promoting iron-related death.
RESULTS:
FANCD2 was significantly upregulated in digestive system cancers with abundant immune infiltration. As an independent risk factor for HCC, a high FANCD2 expression level was associated with poor clinical outcomes and response to immune checkpoint blockade. Gene set enrichment analysis revealed that FANCD2 was mainly involved in the cell cycle and CYP450 metabolism.
CONCLUSION
To the best of our knowledge, this is the first study to comprehensively elucidate the oncogenic role of FANCD2. FANCD2 has a tumor-promoting aspect in the digestive system and acts as an independent risk factor in HCC; hence, it has recognized value for predicting tumor aggressiveness and prognosis and may be a potential biomarker for poor responsiveness to immunotherapy.
Humans
;
Carcinoma, Hepatocellular/diagnosis*
;
Liver Neoplasms/diagnosis*
;
Immunotherapy
;
Fanconi Anemia Complementation Group D2 Protein/metabolism*
;
Prognosis
;
Male
;
Female
;
Middle Aged
;
Biomarkers, Tumor/metabolism*

Result Analysis
Print
Save
E-mail