2.Butyrate-based ionic liquid for improved oral bioavailability and synergistic anti-colorectal cancer activity of glycyrol.
Ziyu WANG ; Xingyue SHI ; Yikang SHU ; Ran GAO ; Ting SUN ; Mingyue WU ; Mingxin DONG ; Weiguo WU ; Ruili MA ; Daoquan TANG ; Min YE ; Shuai JI
Journal of Pharmaceutical Analysis 2025;15(11):101359-101359
Image 1.
3.Low-dose Radiation Therapy for Osteoarthritis
Guo-Rong MA ; Yong-Ze YANG ; Xin MENG ; Yu-Ting GAO ; Shu-Zhi LI ; Hong-Zhang GUO ; Xiao-Dong JIN
Progress in Biochemistry and Biophysics 2024;51(6):1382-1392
Osteoarthritis (OA) is a chronic degenerative joint disease and the most common type of arthritis. It involves almost any joint and can lead to chronic pain and disability. In the late 19th century, Roentgen discovered X-rays, and then began to use radiotherapy to treat tumors. In the 1980s, Luckey thought that low-level radiation (LDRT) might be beneficial to biology, and it was gradually applied to the treatment of some diseases. This paper introduces the epidemiology, risk factors, clinical manifestations and treatment methods of OA, points out that the cartilage injury and the important effect of synovial inflammation in the pathogenesis of OA, namely when the homeostasis of articular cartilage are destroyed, synthetic metabolism and catabolism imbalances, cartilage cells damaged their breakdown products consumed by synovial cells. Synovial cells and synovial macrophages secrete proinflammatory cytokines, metalloproteinases and proteolytic enzymes, leading to cartilage matrix degradation and chondrocyte damage, which aggravates synovial inflammation and cartilage damage, forming a vicious cycle. The possible mechanism and clinical research progress of LDRT in alleviating OA are discussed. LDRT can regulate inflammatory response, inhibit the production of pro-inflammatory cytokines, and promote the production of anti-inflammatory cytokines, thereby achieving anti-inflammatory effect. Studies have shown that after irradiation, the expression of inducible nitric oxide synthase (iNOS) was decreased, the release of reactive oxygen species (ROS) and the production of superoxide were inhibited, the anti-inflammatory phenotype of macrophages was differentiated from M1 to M2, the inflammatory CD8+ T cells were transformed into CD4+ T cells, and the number of dendritic cells (DC) was significantly reduced. LDRT inhibit the production of proinflammatory factors in leukocytes, reduce their recruitment and adhesion, and down-regulate the expression levels of cell adhesion molecules such as selectin, intercellular adhesion molecule (ICAM) and vascular endothelial cell adhesion molecule (VCAM). LDRT can regulate endothelial cells, stimulate endothelial cells to produce a large amount of TGF-β1, reduce the adhesion of endothelial cells to peripheral blood mononuclear cells (PBMC), and contribute to the anti-inflammatory effect of LDRT. It also exerted anti-inflammatory effects by regulating mitochondrial growth differentiation factor 15 (GDF15). After low-level radiation, the MMP-13 (matrix metalloproteinases-13) and the ADAMTS5 (recombinant a disintegrin and metalloproteinase with thrombospondin-5) decreased, the Col2a1 (collagen type 2) increased in chondrocytes. In the existing clinical studies, most patients can achieve relief of joint pain and recovery of joint mobility after irradiation, and the patients have good feedback on the efficacy. The adverse reactions (acute reactions and carcinogenic risks) caused by LDRT in the treatment of OA are also discussed. During the treatment of OA, a few patients have symptoms such as redness, dryness or itching at the joint skin, and the symptoms are mild and do not require further treatment. Patients are thus able to tolerate more frequent and longer doses of radiotherapy. In general, LDRT itself has the advantages of non-invasive, less adverse reactions, and shows the effect of pain relief and movement improvement in the treatment of OA. Therefore, LDRT has a broad application prospect in the treatment of OA.
4.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
5.Effects of hydroxysafflor yellow A on autophagy in bEnd.3 cells after oxygen-glucose deprivation
Yao-Yao DAI ; Meng-Qi SHU ; Ru-Heng WEI ; Zhu-Yue MIAO ; Zhi-Bin DING ; Dong MA ; Jian-Jun HUANG ; Li-Juan SONG ; Cun-Gen MA
The Chinese Journal of Clinical Pharmacology 2024;40(12):1734-1738
Objective To explore the effect and mechanism of hydroxysafflor yellow A(HSYA)on autophagy in bEnd.3 cells after oxygen-glucose deprivation(OGD).Methods The bEnd.3 cells were divided into normal group(conventional culture),model group(OGD model),HSYA group(OGD model+75 μmol·L-1 HSYA),3-methyladenine(3MA)group(5 mmol·L-1 3MA+OGD model)and 3 MA+HSYA group(5 mmol·L-1 3 MA+OGD model+75 μmol·L-1 HSYA).The level of apoptosis was determined by TUNEL fluorescence staining;Western blot was used to detect the expression of autophagy,blood brain barrier(BBB)related proteins;real time fluorescence quantitative polymerase chain reaction method for determining the expression of sirtuin-1(SIRT1)and forkhead box protein O3a(FOXO3A)mRNA.Results In the normal group,model group,HSYA group,3MA group and 3MA+HSYA group,the positive cells selected for TUNEL staining were 5.00±1.00,28.00±2.00,21.00±3.00,35.33±2.51 and 29.67±2.52;the expression levels of microtubule-associated protein 1 light chain 3-Ⅱ/-Ⅰ(LC3-Ⅱ/-Ⅰ)were 0.90±0.20,1.34±0.10,1.95±0.14,0.76±0.15 and 1.14±0.09;sequestosome 1(P62)were 0.99±0.02,0.60±0.02,0.38±0.01,0.67±0.04 and 0.54±0.01;occludin were 1.39±0.17,0.62±0.15,1.00±0.09,0.40±0.13 and 0.80±0.15;zonula occludens-1(ZO-1)were 1.63±0.20,0.64±0.06,0.98±0.14,0.37±0.14 and 0.87±0.04;SIRT1 mRNA were 1.00±0.00,0.75±0.07,1.69±0.09,0.31±0.02 and 0.56±0.01;FOXO3A mRNA were 1.00±0.00,0.80±0.05,1.47±0.09,0.40±0.01 and 0.62±0.09,respectively.Significant differences were found between model group and normal group,HSYA group and model group,3MA+HSYA group and 3MA group(P<0.05,P<0.01,P<0.001).Conclusion HSYA may enhance autophagy levels in bEnd.3 cells after OGD through the SIRT1/FOXO3A pathway,inhibit cell apoptosis and alleviate BBB damage.
6.Research status of Wnt5a-Frizzled-2 pathway and ischemia-reperfusion injury
Zhi-Peng SUN ; Shu-Su DONG ; Chuan-Cheng MA ; Chen-Ying WANG ; Fei CHEN ; Hai-Ying WANG
The Chinese Journal of Clinical Pharmacology 2024;40(13):1972-1976
The Wnt signaling pathway includes both classical and non classical pathways,Wnt5a-Frizzled-2 pathway participates in the Wnt/Ca2+signaling pathway in the non-classical pathway,which is activated by the Wnt-related protein Wnt5a and its ligand Frizzled-2.It can regulate some key sites in cells to affect cell signal transduction,and is closely related to cell growth process.Activation of Wnt5a-Fizzled-2 pathway occurs in some tissues with abundant blood supply,such as heart and brain tissues,during ischemia-reperfusion.Activation of the Wnt5a-Frizzled-2 pathway causes these intracellular calcium overload,ultimately promoting apoptosis.This article reviews the abnormal activation of Wnt5a-Frizzled-2 signaling pathway in ischemia-reperfusion injury diseases and the induced calcium overload leading to apoptosis,in order to provide reference for the study of physiological mechanisms of ischemia-reperfusion injury.
7.A serial case study of the combined use of intraoperative CT and surgical navigation system for the removal of small foreign bodies in the maxillofacial region
Dong-Yang MA ; Shu-Meng ZHANG ; Chao-Yuan PANG ; Wen-Kai ZHANG ; Bing-Wu WANG
Chinese Journal of Traumatology 2024;27(5):279-283
Purpose::The removal of small foreign bodies embedded within the deep soft tissues of the maxillofacial region is a complex and challenging task for maxillofacial surgeons. The purpose of this study was to explore the efficacy of the combination of intraoperative CT and surgical navigation for the removal of small foreign objects in the maxillofacial region.Methods::A serial case study was conducted involving all consecutive patients who underwent surgical removal of small foreign bodies in the maxillofacial region. The combination of intraoperative CT and a surgical navigation system was used at a single medical institution from January 2018 to December 2022. Comprehensive data, including patient demographics, characteristics of the foreign bodies, previous surgical interventions, duration of the surgical procedure, and removal success rate were collected for this study. Relevant data were recorded into Microsoft Excel sheet and analyzed using SPSS version 22.0.Results::Nine patients (6 males and 3 females) were included in this study, with an average age of 37 years. Each patient had previously undergone an unsuccessful removal attempt utilizing conventional surgical methods based on preoperative CT imaging or C-arm guidance at a local healthcare facility. Four patients also experienced unsuccessful attempts with preoperative CT image-based navigation systems. However, by employing the combined approach of intraoperative CT and surgical navigation, the foreign bodies were successfully removed in all 9 patients. The mean duration of the surgical procedure was 59 min, and the average size of the foreign bodies was approximately 26 mm 3. Postoperative follow-up exceeding 6 months revealed no complications. Conclusion::The combined use of a surgical navigation system and intraoperative CT represents a potent and effective strategy for the precise localization and subsequent removal of small foreign bodies from the soft tissue structures of the maxillofacial region. This integrative approach appears to increase the success rate of surgical interventions in such cases.
8.The value of cardiac MRI in the risk stratification in patients with hypertrophic cardiomyopathy.
Jia Xin WANG ; Shu Juan YANG ; Xuan MA ; Shi Qin YU ; Zhi Xiang DONG ; Xiao Rui XIANG ; Zhu Xin WEI ; Chen CUI ; Kai YANG ; Xiu Yu CHEN ; Min Jie LU ; Shi Hua ZHAO
Chinese Journal of Cardiology 2023;51(6):619-625
Objective: To explore the value of cardiac magnetic resonance imaging (CMR) in the risk stratification of hypertrophic cardiomyopathy (HCM). Methods: HCM patients who underwent CMR examination in Fuwai Hospital between March 2012 and May 2013 were retrospectively enrolled. Baseline clinical and CMR data were collected and patient follow-up was performed using telephone contact and medical record. The primary composite endpoint was sudden cardiac death (SCD) or and equivalent event. The secondary composite endpoint was all-cause death and heart transplant. Patients were divided into SCD and non-SCD groups. Cox regression was used to explore risk factors of adverse events. Receiver operating characteristic (ROC) curve analysis was used to assess the performance and the optimal cut-off of late gadolinium enhancement percentage (LGE%) for the prediction of endpoints. Kaplan-Meier and log-rank tests were used to compare survival differences between groups. Results: A total of 442 patients were enrolled. Mean age was (48.5±12.4) years and 143(32.4%) were female. At (7.6±2.5) years of follow-up, 30 (6.8%) patients met the primary endpoint including 23 SCD and 7 SCD equivalent events, and 36 (8.1%) patients met the secondary endpoint including 33 all-cause death and 3 heart transplant. In multivariate Cox regression, syncope(HR=4.531, 95%CI 2.033-10.099, P<0.001), LGE% (HR=1.075, 95%CI 1.032-1.120, P=0.001) and left ventricular ejection fraction (LVEF) (HR=0.956, 95%CI 0.923-0.991, P=0.013) were independent risk factors for primary endpoint; Age (HR=1.032, 95%CI 1.001-1.064, P=0.046), atrial fibrillation (HR=2.977, 95%CI 1.446-6.131, P=0.003),LGE% (HR=1.075, 95%CI 1.035-1.116, P<0.001) and LVEF (HR=0.968, 95%CI 0.937-1.000, P=0.047) were independent risk factors for secondary endpoint. ROC curve showed the optimal LGE% cut-offs were 5.1% and 5.8% for the prediction of primary and secondary endpoint, respectively. Patients were further divided into LGE%=0, 0
Humans
;
Female
;
Adult
;
Middle Aged
;
Male
;
Contrast Media
;
Retrospective Studies
;
Stroke Volume
;
Gadolinium
;
Ventricular Function, Left
;
Magnetic Resonance Imaging
;
Cardiomyopathy, Hypertrophic/diagnostic imaging*
;
Death, Sudden, Cardiac
;
Risk Assessment
9.Concomitant occurrences of pulmonary embolism and acute myocardial infarction in acute coronary syndrome patient undergoing percutaneous coronary intervention: a case report.
Zhi-Qiang YANG ; Shu-Tong DONG ; Qiao-Yu SHAO ; Yu-Fei WANG ; Qiu-Xuan LI ; Zai-Qiang LIU ; Xiao-Teng MA ; Jing LIANG ; Dong-Mei SHI ; Yu-Jie ZHOU ; Fei GAO ; Zhi-Jian WANG
Journal of Geriatric Cardiology 2023;20(12):880-885
10.Effect and mechanism of PNU-282987 on cognitive function of temporal lobe epilepsy model rats
Yongge LI ; Shu ZHOU ; Qingchun LIU ; Xiaoming WEI ; Dong ZHANG ; Fengqiao MA
China Pharmacy 2023;34(19):2350-2355
OBJECTIVE To investigate the effect and mechanism of α7 nicotinic acetylcholine receptor (α7nAChR) agonists PNU-282987 on cognitive function in temporal lobe epilepsy (TLE) model rats. METHODS Sixty rats were randomly divided into control group, model group, PNU-282987 group (3 mg/kg) and methyllycaconitine (MLA)+PNU-282987 group (6 mg/kg MLA+3 mg/kg PNU-282987), with 15 rats in each group. Except for control group, the TLE model was established in the other groups. After the model was successfully established, each group was given relevant medicine or normal saline intraperitoneally, once a day, for two consecutive weeks. The epilepsy attack of rats was observed and scored, and the duration of seizures was recorded; the cognitive function of rats was detected; pathological morphology of neurons in CA1 region was observed; the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β in the hippocampus were detected; the positive expressions of ionized calcium-binding adapter molecule-1 (IBA-1), α7nAChR, nuclear factor-κB (NF-κB) p65, p-NF-κB p65 in the hippocampus were detected. RESULTS Compared with model group, the score and duration of seizures, the number of IBA-1 positive cells, the levels of TNF- α, IL-6 and IL-1β, the expressions of NF- κB p65 and p-NF- κB p65 protein decreased significantly in the hippocampus (P<0.05); the escape latency time was shortened significantly (P<0.05), the time spent in the original platform quadrant and times of crossing the platform increased significantly (P<0.05); neuronal damage in the CA1 region of the hippocampus was significantly reduced; the expression of α7nAChR protein increased significantly in hippocampus (P<0.05). Compared with PNU-282987 group, the above indexes of rats in MLA+PNU-282987 group were reversed significantly (P<0.05). CONCLUSIONS PNU-282987 could improve cognitive dysfunction in TLE model rats, and its mechanism may be associated with inhibiting microglia-mediated inflammatory response through α7nAChR/NF- κB signaling pathway, thus reducing hippocampal neuronal damage.

Result Analysis
Print
Save
E-mail