1.Eye Movement and Gait Variability Analysis in Chinese Patients With Huntington’s Disease
Shu-Xia QIAN ; Yu-Feng BAO ; Xiao-Yan LI ; Yi DONG ; Zhi-Ying WU
Journal of Movement Disorders 2025;18(1):65-76
Objective:
Huntington’s disease (HD) is characterized by motor, cognitive, and neuropsychiatric symptoms. Oculomotor impairments and gait variability have been independently considered as potential markers in HD. However, an integrated analysis of eye movement and gait is lacking. We performed multiple examinations of eye movement and gait variability in HTT mutation carriers, analyzed the consistency between these parameters and clinical severity, and then examined the associations between oculomotor impairments and gait deficits.
Methods:
We included 7 patients with pre-HD, 30 patients with HD and 30 age-matched controls. We collected demographic data and assessed the Unified Huntington’s Disease Rating Scale (UHDRS) score. Examinations, including saccades, smooth pursuit tests, and optokinetic (OPK) tests, were performed to evaluate eye movement function. The parameters of gait include stride length, walking velocity, step deviation, step length, and gait phase.
Results:
HD patients have significant impairments in the latency and velocity of saccades, the gain of smooth pursuit, and the gain and slow phase velocities of OPK tests. Only the speed of saccades significantly differed between pre-HD patients and controls. There are significant impairments in stride length, walking velocity, step length, and gait phase in HD patients. The parameters of eye movement and gait variability in HD patients were consistent with the UHDRS scores. There were significant correlations between eye movement and gait parameters.
Conclusion
Our results show that eye movement and gait are impaired in HD patients and that the speed of saccades is impaired early in pre-HD. Eye movement and gait abnormalities in HD patients are significantly correlated with clinical disease severity.
2.Eye Movement and Gait Variability Analysis in Chinese Patients With Huntington’s Disease
Shu-Xia QIAN ; Yu-Feng BAO ; Xiao-Yan LI ; Yi DONG ; Zhi-Ying WU
Journal of Movement Disorders 2025;18(1):65-76
Objective:
Huntington’s disease (HD) is characterized by motor, cognitive, and neuropsychiatric symptoms. Oculomotor impairments and gait variability have been independently considered as potential markers in HD. However, an integrated analysis of eye movement and gait is lacking. We performed multiple examinations of eye movement and gait variability in HTT mutation carriers, analyzed the consistency between these parameters and clinical severity, and then examined the associations between oculomotor impairments and gait deficits.
Methods:
We included 7 patients with pre-HD, 30 patients with HD and 30 age-matched controls. We collected demographic data and assessed the Unified Huntington’s Disease Rating Scale (UHDRS) score. Examinations, including saccades, smooth pursuit tests, and optokinetic (OPK) tests, were performed to evaluate eye movement function. The parameters of gait include stride length, walking velocity, step deviation, step length, and gait phase.
Results:
HD patients have significant impairments in the latency and velocity of saccades, the gain of smooth pursuit, and the gain and slow phase velocities of OPK tests. Only the speed of saccades significantly differed between pre-HD patients and controls. There are significant impairments in stride length, walking velocity, step length, and gait phase in HD patients. The parameters of eye movement and gait variability in HD patients were consistent with the UHDRS scores. There were significant correlations between eye movement and gait parameters.
Conclusion
Our results show that eye movement and gait are impaired in HD patients and that the speed of saccades is impaired early in pre-HD. Eye movement and gait abnormalities in HD patients are significantly correlated with clinical disease severity.
3.Eye Movement and Gait Variability Analysis in Chinese Patients With Huntington’s Disease
Shu-Xia QIAN ; Yu-Feng BAO ; Xiao-Yan LI ; Yi DONG ; Zhi-Ying WU
Journal of Movement Disorders 2025;18(1):65-76
Objective:
Huntington’s disease (HD) is characterized by motor, cognitive, and neuropsychiatric symptoms. Oculomotor impairments and gait variability have been independently considered as potential markers in HD. However, an integrated analysis of eye movement and gait is lacking. We performed multiple examinations of eye movement and gait variability in HTT mutation carriers, analyzed the consistency between these parameters and clinical severity, and then examined the associations between oculomotor impairments and gait deficits.
Methods:
We included 7 patients with pre-HD, 30 patients with HD and 30 age-matched controls. We collected demographic data and assessed the Unified Huntington’s Disease Rating Scale (UHDRS) score. Examinations, including saccades, smooth pursuit tests, and optokinetic (OPK) tests, were performed to evaluate eye movement function. The parameters of gait include stride length, walking velocity, step deviation, step length, and gait phase.
Results:
HD patients have significant impairments in the latency and velocity of saccades, the gain of smooth pursuit, and the gain and slow phase velocities of OPK tests. Only the speed of saccades significantly differed between pre-HD patients and controls. There are significant impairments in stride length, walking velocity, step length, and gait phase in HD patients. The parameters of eye movement and gait variability in HD patients were consistent with the UHDRS scores. There were significant correlations between eye movement and gait parameters.
Conclusion
Our results show that eye movement and gait are impaired in HD patients and that the speed of saccades is impaired early in pre-HD. Eye movement and gait abnormalities in HD patients are significantly correlated with clinical disease severity.
4.Self-face Advantage Processing and Its Mechanisms
Xiao-Xia TANG ; Shu-Jia ZHANG ; Ying ZHANG ; Li WANG
Progress in Biochemistry and Biophysics 2025;52(7):1771-1791
Self-face is a unique and highly distinctive stimulus, not shared with others, and serves as a reliable marker of self-awareness. Compared to other faces, self-face processing exhibits several advantages, including the self-face recognition advantage, self-face attention advantage, and self-face positive processing advantage. The self-face recognition advantage manifests as faster and more accurate identification across different orientations and spatial frequency components, supported by enhanced early event-related potential (ERP) components, such as N170. Attentional biases toward self-face are evident in target detection during spatial tasks and the attentional blink effect in temporal paradigms. However, measurement sensitivity, perceptual load, and task demands contribute to some mixed findings. Positive biases further characterize the self-face processing advantage, with individuals perceiving their faces as more attractive or trustworthy than objective representations. These biases even extend to self-similar others, influencing social behaviors such as trust and voting preferences. Self-face processing advantages have been observed at an unconscious level and are regulated by several factors, including self-esteem, cultural differences, and multisensory integration. Cultural and individual differences play a crucial role in shaping self-face advantages. Individuals from Western cultures, which emphasize independent self-construal, exhibit stronger self-face biases compared to those from East Asian collectivist contexts. Self-esteem also modulates self-face advantages: high-self-esteem individuals generally maintain their self-face recognition advantage despite interference, exhibit attentional prioritization of self-faces, and demonstrate enhanced positive associations with subliminal self-faces. In contrast, low-self-esteem individuals display recognition vulnerabilities to social cues, show context-dependent attentional divergence (prioritizing others’ faces in task-oriented settings while prioritizing self-face in free-viewing tasks), and exhibit reversed positive associations with subliminal self-faces. Multisensory integration, such as synchronized visual-tactile cues, enhances self-face advantages and induces perceptual plasticity. This phenomenon is exemplified by the enfacement illusion, in which synchronous visual and tactile inputs update the mental representation of the self-face, leading to assimilation with another face. Neuroanatomically, self-face processing is predominantly lateralized to the right hemisphere and involves a network of brain regions, including the occipital lobe, temporal lobe, frontal lobe, insula, and cingulate gyrus. Disruptions in these networks are linked to self-face processing deficits in socio-cognitive disorders. For instance, autism spectrum disorder (ASD) and schizophrenia are associated with attenuated self-face advantages and abnormal neural activity in regions such as the right inferior frontal gyrus, insula, and posterior cingulate cortex. These findings suggest that self-face processing could serve as a potential biomarker for the early diagnosis and intervention of such disorders. In recent years, researchers have proposed various theoretical explanations for self-face processing and its advantage effects. However, some studies have reported no significant behavioral or neural advantages of self-faces over familiar faces, leaving the specificity of self-face a subject of debate. Further elucidation of self-face specificity requires the adoption of a face association paradigm, which controls for facial familiarity and helps determine whether qualitative differences exist between self-faces and familiar faces. Given the close relationship between self-face processing advantages and socio-cognitive disorders (e.g., ASD, schizophrenia), a deeper understanding of self-face specificity has the potential to provide critical insights into the early identification, classification, and intervention of these disorders. This research holds both theoretical significance and substantial social value.
5.Research status of gene mutation encoding cardiomyocyte sarcomere and hypertrophic cardiomyopathy
Ya-Fen CHEN ; Cheng-Yi WANG ; Li-Xia YU ; Shu-Su DONG ; Li-Ming CHEN ; Hai-Ying WANG
The Chinese Journal of Clinical Pharmacology 2024;40(1):130-134
Mutations in myosin heavy chain 7(MYH7)and myosin binding protein C3(MYBPC3)genes encoding thick filaments are the main cause of hypertrophic cardiomyopathy(HCM),while a small part of HCM is caused by mutations of troponin C1,slow skeletal and cardiac type(TNNC1),troponin T2,cardiac type(TNNT2),troponin I3,cardiac type(TNNI3),actin alpha cardiac muscle 1(ACTC1),and tropomyosin 1(TPM1)genes encoding thin filaments.In this review,we mainly introduce the detailed mechanism and research status of HCM caused by mutations of the gene encoding cardiomyocyte sarcomere in the past few years,in order to provide reference for further study of the pathogenesis and treatment of HCM.
6.Effects of vitamin D mediated MEK/ERK pathway on myocardial damage in rats with gestational diabetes mellitus
Er-Xia JIA ; Na XU ; Shuai LI ; Qiu-Fang SHU
The Chinese Journal of Clinical Pharmacology 2024;40(7):1014-1018
Objective To investigate the effects of vitamin D mediated mitogen-activated protein kinase(MEK)/extracellular signal-regulated kinase(ERK)pathway on myocardial injury in rats with gestational diabetes mellitus.Methods Fifty SD rats were divided into control group,model group,experimental-L group,experimental-M group and experimental-H group,and the gestational diabetes rat model was established.After successful modeling,experimental-L,experimental-M,experimental-H groups were given intragastric administration of 0.05,0.10 and 0.15 μg·kg-1 concentration of vitamin D,while control group and model group were given intragastric administration of 0.9%NaCl at the same dose once a day for 2 weeks.Fasting blood glucose concentration and insulin level were detected before intervention,1 week and 2 weeks after intervention.Echocardiography was used to detect cardiac function[left ventricular ejection fraction(LVEF),maximum rate of rise(+dp/dtmax)and maximum rate of decline(-dp/dtmax)of left ventricular pressure].Myocardial enzyme indexes[troponin Ⅰ(cTn Ⅰ)kit,creatine kinase isoenzyme(CK-MB)]and inflammatory factors[tumor necrosis factor-α(TNF-α),C-reactive protein(CRP)]in serum and myocardial tissue of rats were detected by enzyme-linked immunosorbent assay(ELISA),and MEK/ERK pathway protein expression was detected by western blot.Results The levels of cTn Ⅰ in cardiac tissue of control group,model group,experimental-L group,experimental-M group,experimental-H group were(10.50±1.08),(42.26±4.30),(31.85±2.44),(23.31±2.15)and(14.85±1.19)ng·mL-1;serum cTn Ⅰ levels were(23.79±3.46),(63.59±5.52),(51.02±4.27),(42.75±3.19)and(29.20±2.11)ng·mL-1;myocardial tissue levels of CK-MB were(8.52±0.90),(17.65±1.75),(15.62±1.27),(13.11±1.24)and(9.85±0.87)ng·mL-1;serum levels of CK-MB were(11.32±0.98),(21.24±1.45),(18.75±1.32),(15.11±1.02)and(12.27±1.11)ng·mL-1;phosphorylated-MEK protein expression were 0.24±0.03,0.85±0.09,0.72±0.06,0.57±0.07 and 0.35±0.04;phosphorylated-ERK1/2 protein expression were 0.18±0.02,0.66±0.07,0.52±0.06,0.40±0.07 and 0.24±0.05,respectively.There were statistically significant differences of above indexes between control group and model group(all P<0.05);the difference between model group and experimental-L,experimental-M,experimental-H groups were all statistically significant(all P<0.05).Conclusion Vitamin D may reduce myocardial injury in rats with gestational diabetes by inhibiting the activation of MEK/ERK pathway.
7.Vascularized tracheal substitutes constructed by exosome-load hydrogel-modified 3D printed scaffolds
Ziqing SHEN ; Tian XIA ; Yibo SHAN ; Ruijun ZHU ; Haoxin WAN ; Hao DING ; Shu PAN ; Jun ZHAO
Chinese Journal of Tissue Engineering Research 2024;28(5):697-705
BACKGROUND:For the replacement treatment of long-segment tracheal defects,although tissue engineering research has made some progress in recent years,it is still not perfect,and one of the biggest difficulties is that the hemodynamic reconstruction of the tracheal replacement cannot be achieved rapidly. OBJECTIVE:To preliminarily explore the potential of polycaprolactone scaffolds modified with exosome-loaded hydrogels to construct a rapidly vascularized tracheal substitute. METHODS:Exosomes were extracted from bone marrow mesenchymal stem cells of SD rats.After preparation of hyaluronic acid methacrylate solution,the exosome solution was mixed with hyaluronic acid methacrylate solution at a volume ratio of 1:1.Hyaluronic acid methacrylate hydrogels loaded with exosomes were prepared under ultraviolet irradiation for 5 minutes.The degradation of exosome-unloaded hydrogels and the controlled release of exosome-loaded hydrogels were detected.Polycaprolactone scaffolds were prepared by 3D printing.The pure hyaluronic acid methacrylate solution and the exosome-loaded hyaluronic acid methacrylate solution were respectively added to the surface of the scaffold.Hydrogel-modified scaffolds and exosome-modified scaffolds were obtained after ultraviolet irradiation.Thirty SD rats were randomly divided into three groups with 10 rats in each group and subcutaneously implanted with simple scaffolds,hydrogel-modified scaffolds and exosome-modified scaffolds,respectively.At 30 days after surgery,the scaffolds and surrounding tissues of each group were removed.Neovascularization was observed by hematoxylin-eosin staining and Masson staining and the expression of CD31 was detected by immunofluorescence. RESULTS AND CONCLUSION:(1)As time went by,the hydrogel degraded gradually,and the exosomes enclosed in the hydrogel were gradually released,which could be sustained for more than 30 days.The exosome release rate was faster than the degradation rate of the hydrogel itself,and nearly 20%of the exosomes were still not released after 30 days of soaking.(2)Under a scanning electron microscope,the surface of the simple polycaprolactone scaffold was rough.After hydrogel modification,a layer of gel was covered between the pores of the scaffold,and the scaffold surface became smooth and dense.(3)After 30 days of subcutaneous embedding,hematoxylin-eosin staining and Masson staining showed that more neovascularization was observed inside the scaffolds of the exosome-modified scaffold group compared with the hydrogel-modified scaffold group.The hydrogels on the scaffolds of the two groups were not completely degraded.Immunofluorescence staining showed that CD31 expression in the exosome-modified scaffold group was higher than that in the hydrogel-modified scaffold group(P<0.000 1).(4)These results indicate that hyaluronic acid methacrylate hydrogels can be used as controlled-release carriers for exosomes.The 3D-printed polycaprolactone scaffold modified by hyaluronic acid methacrylate hydrogel loaded with exosomes has good biocompatibility and has the potential to promote the formation of neovascularization.
8.Proteomic Analysis of Alveolar Macrophages in Pulmonary Fibrosis Microenvironment
Xia-Yan WU ; Di LIU ; Yu-Chen LIU ; Shu-Hui JI ; Bin FU ; Ying LIU ; Li TANG
Progress in Biochemistry and Biophysics 2024;51(10):2757-2772
ObjectiveAlveolar macrophages (AMs) are critical for maintaining the homeostasis of pulmonary microenvironment. They process surfactants to ensure alveoli patency, and also serve as the first line of immune defense against pathogen invasion. Available studies have shown that monocyte-derived AMs continuously release pro-inflammatory cytokines and chemokines, recruiting other immune cells to the damaged area during pulmonary fibrosis. These monocyte-derived AMs maintains and amplifies inflammation, playing a negative role in pulmonary fibrosis progression. Current researches have predominantly focused on the gene expression levels of AMs in pulmonary fibrosis microenvironment, with less emphasis on the function and regulation of proteins. This study aims to investigate the differentially expressed proteins (DEPs) of AMs under normal physiological conditions and after pulmonary fibrosis, in order to gain a more comprehensive understanding of the role of AMs in the progression of pulmonary fibrosis. MethodsFirstly, the construction of bleomycin-induced pulmonary fibrosis mouse models was evaluated through using measurements such as body mass, lung coefficient, lungwet-to-dry mass ratio, H&E staining and Masson staining. Subsequently, AMs from both the saline controls and the pulmonary fibrosis models (2.5×105 cells per sample) were collected using FACS sorting, and protein expression profiles of these cells were obtained through label-free proteomics approach
9.Mechanism of Guilingji to prevent the mild cognitive impairment in rats based on kidney metabonomics
Jing-chao SHI ; Yu-kun WANG ; Shu-ting YU ; Ai-rong ZHANG ; Xiao-xia GAO ; Xue-mei QIN
Acta Pharmaceutica Sinica 2024;59(4):1017-1027
This study used kidney metabolomics to investigate the underlying mechanisms of Guilingji (GLJ) on mild cognitive impairment (MCI) rats. The rats were randomly divided into 6 groups (
10.Basic and Clinical Research of Fecal Microbiota Transplantation in The Treatment of Central Nervous System Diseases
Hong-Ru LI ; Cai-Hong LEI ; Shu-Wen LIU ; Yuan YANG ; Hai-Xia CHEN ; Run ZHANG ; Yin-Jie CUI ; Zhong-Zheng LI
Progress in Biochemistry and Biophysics 2024;51(11):2921-2935
As a microbial therapy method, fecal microbiota transplantation (FMT) has attracted the attention of researchers in recent years. As one of the most direct and effective methods to improve gut microbiota, FMT achieves therapeutic benefits by transplanting functional gut microbiota from healthy human feces into the intestines of patients to reconstruct new gut microbiota. FMT has been proven to be an effective treatment for gastrointestinal diseases such as Clostridium difficile infection, irritable bowel syndrome, and inflammatory bowel disease. In addition, the clinical and basic research of FMT outside the gastrointestinal system is also emerging. It is worth noting that there is bidirectional communication between the gut microbial community and the central nervous system (CNS) through the gut-brain axis. Some gut bacteria can synthesize and release neurotransmitters such as glutamate, gamma-aminobutyric acid (GABA) and dopamine. Imbalanced gut microbiota may interfere with the normal levels of these neurotransmitters, thereby affecting brain function. Gut microbiota can also produce metabolites that may cross the blood-brain barrier and affect CNS function. FMT may affect the occurrence and development of CNS and its related diseases by reshaping the gut microbiota of patients through a variety of pathways such as nerves, immunity, and metabolites. This article introduces the development of FMT and the research status of FMT in China, and reviews the basic and clinical research of FMT in neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease), neurotraumatic diseases (spinal cord injury, traumatic brain injury) and stroke from the characteristics of three types of nervous system diseases, the characteristics of intestinal flora, and the therapeutic effect and mechanism of fecal microbiota transplantation, summarize the common mechanism of fecal microbiota transplantation in the treatment of CNS diseases and the therapeutic targets. We found that the common mechanisms of FMT in the treatment of nervous system diseases may include the following 3 categories through summary and analysis. (1) Gut microbiota metabolites, such as SCFAs, TMAO and LPS. (2) Inflammatory factors and immune inflammatory pathways such as TLR-MyD88 and NF-κB. (3) Neurotransmitter 5-HT. In the process of reviewing the studies, we found the following problems. (1) In basic researches on the relationship between FMT and CNS diseases, there are relatively few studies involving the autonomic nervous system pathway. (2) Clinical trial studies have shown that FMT improves the severity of patients’ symptoms and may be a promising treatment for a variety of neurological diseases. (3) The improvement of clinical efficacy is closely related to the choice of donor, especially emphasizing that FMT from healthy and young donors may be the key to the improvement of neurological diseases. However, there are common challenges in current research on FMT, such as the scientific and rigorous design of FMT clinical trials, including whether antibiotics are used before transplantation or different antibiotics are used, as well as different FMT processes, different donors, different functional analysis methods of gut microbiota, and the duration of FMT effect. Besides, the safety of FMT should be better elucidated, especially weighing the relationship between the therapeutic benefits and potential risks of FMT carefully. It is worth mentioning that the clinical development of FMT even exceeds its basic research. Science and TIME rated FMT as one of the top 10 breakthroughs in the field of biomedicine in 2013. FMT therapy has great potential in the treatment of nervous system diseases, is expected to open up a new situation in the medical field, and may become an innovative weapon in the medical field.

Result Analysis
Print
Save
E-mail