1.Exploration of radiotherapy as a combined treatment modality with in situ vaccines in the treatment of advanced soft tissue sarcomas
TAN Siyi, ; WANG Xiaolu ; WANG Qin ; DU Shiyao ; YIN Fangtao ; YANG Yiqi ; SUN Wu ; LIU Juan ; ZHOU Xia ; LIU Baorui, ; LI Rutian
Chinese Journal of Cancer Biotherapy 2025;32(4):418-424
[摘 要] 目的:评估放疗作为原位疫苗的联合治疗模式在晚期软组织肉瘤(STS)患者中的有效性和安全性。方法:回顾性分析2020年12月至2024年9月期间在南京大学医学院附属鼓楼医院肿瘤中心接受联合治疗模式的12例晚期STS患者的临床资料。12例患者均接受了联合治疗。放疗主要以大分割为主。靶向治疗:安罗替尼10例、阿帕替尼2例。免疫治疗以PD-1抗体为主。主要研究终点为疾病控制率(DCR),次要研究终点为客观有效率(ORR)及安全性。结果:接受联合治疗的12例STS患者中有0例CR,4例PR,7例SD,1例PD。ORR为33%,DCR为91.7%,其中靶病灶的DCR为100%。12例患者中,9例出现Ⅰ~Ⅱ级不良反应。最常发生的血液学不良反应是贫血(6例)、肝功能检查结果异常(3例)。最常发生的非血液学不良反应是尿蛋白(5例)、高血压(4例)、甲状腺功能异常(3例)、厌食(3例)、恶心呕吐(2例);仅2例发生Ⅲ级血液毒性,有1例发生Ⅲ级气胸。结论:放疗作为原位疫苗的联合治疗模式在晚期STS患者中展现出较高的DCR,且未出现严重不良反应。该联合治疗模式具有良好的有效性与安全性。
2.Effect of Dingchuan Granule (定喘颗粒) on Lung Tissue Oxidative Stress and Nrf2/Keap1/HO-1/NQO1 Pathway in Respiratory Syncytial Virus Pneumonia Model Rats
Lai ZHANG ; Xiuying ZHANG ; Chenhao WEI ; Shiyao ZHANG ; Zhaoyang LI ; Rui WANG ; Hangyu ZHAO
Journal of Traditional Chinese Medicine 2025;66(15):1588-1596
ObjectiveTo explore the potential mechanism of Dingchuan Granule (定喘颗粒, DG) in the treatment of respiratory syncytial virus (RSV) pneumonia. MethodsA total of 60 male Sprague Dawley (SD) rats were randomly divided into control group, model group, ribavirin group, DG low-dose group, DG middle-dose group, and DG high-dose group, with 10 rats in each group. Except for the control group, rats were administrated with RSV via intranasal drip. After model establishment, the DG low-, middle-, and high-dose groups were administrated via oral gavage with DG at 3.47, 6.93, and 13.86 g/(kg·d) respectively, while the ribavirin group was administrated via oral gavage with ribavirin at 15.75 mg/(kg·d). The drug was given once daily for one week. The rats in the control group and the model group were not given any drug, only subjected to the grasping action. Twenty-four hours after the last administration, the pathological changes of lung tissues were observed and scored using HE staining. The levels of serum inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), were detected by colorimetry. The protein levels of nuclear factor (erythroid derived 2)-like 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap1), heme oxygenase 1 (HO-1), and NAD(P)H quinone dehydrogenase 1 (NQO1) in lung tissues were measured by Western Blot. The RSV load as well as the gene expression levels of Nrf2, Keap1, HO-1, and NQO1 in lung tissues were determined by qRT-PCR. The level of reactive oxygen species (ROS) in rat lung tissues was detected using chemiluminescence. The levels of glutathione (GSH) and malondialdehyde (MDA) in rat lung tissues were measured by a microassay. ResultsCompared with the control group, other groups had significant increases in pathological score of lung tissue, RSV load, levels of ROS, MDA, serum TNF-α, IL-1β, and IL-6; decrease in GSH level, increases in expression level of Keap1 protein and its mRNA in lung tissue, and significant decrease in levels of Nrf2, HO-1, expression level of NQO1 protein and its mRNA (P<0.05). Compared with the model group, all the above-mentioned indicators in the DG low-, middle-, and high-dose groups and the ribavirin group were improved to varying degree (P<0.05). The levels of serum TNF-α, IL-1β, and IL-6 in rats of DG dose groups showed a dose-dependent pattern, the DG high-dose group exhibiting the best effect (P<0.05). The DG high-dose group was superior to the DG low- and middle-dose groups in reducing the levels of ROS and MDA, and increasing the level of GSH in lung tissues (P<0.05). The DG high-dose group and the ribavirin group had better effect than the DG middle-dose group in reducing the RSV load (P<0.05). The DG high-dose group was superior to the ribavirin group in improving the protein levels of Nrf2, Keap1, HO-1, and NQO1 (P<0.05). ConclusionDG could inhibit oxidative stress by regulating the Nrf2/Keap1/HO-1/NQO1 signaling pathway to improve pulmonary inflammation and treat RSV pneumonia, with the DG high-dose group showing the best effect.
3.COVID-19 outcomes in patients with pre-existing interstitial lung disease: A national multi-center registry-based study in China.
Xinran ZHANG ; Bingbing XIE ; Huilan ZHANG ; Yanhong REN ; Qun LUO ; Junling YANG ; Jiuwu BAI ; Xiu GU ; Hong JIN ; Jing GENG ; Shiyao WANG ; Xuan HE ; Dingyuan JIANG ; Jiarui HE ; Sa LUO ; Shi SHU ; Huaping DAI
Chinese Medical Journal 2025;138(9):1126-1128
4.Global burden of metabolic-associated fatty liver disease: A systematic analysis of Global Burden of Disease Study 2021.
Yichen WANG ; Xiaoquan HUANG ; Sitao YE ; Tian LI ; Yuting HUANG ; Mahesh CHERYALA ; Shiyao CHEN
Chinese Medical Journal 2025;138(22):2947-2954
BACKGROUND:
Metabolic-associated fatty liver disease (MAFLD) is a common liver disease and may become the leading cause of severe liver disease in the future. The Global Burden of Disease (GBD) study assesses MAFLD's impact in countries and regions worldwide, providing insights into its prevalence.
METHODS:
Prevalence data for MAFLD from 1990 to 2021 by country and region in all sex and age groups were collected from the Global Health Data Exchange. The categorization of countries and geographic areas by development was performed using the Sociodemographic Index (SDI).
RESULTS:
Between 1990 and 2021, the global crude prevalence rate of MAFLD increased from 10.6% to 16.1% (beta-coefficient: 0.2%, 95% confidence interval [CI]: 0.2-0.2%, P <0.001), and the age-standardized prevalence rate was increased from 12.1% to 15.0% (beta-coefficient: 0.1%, 95% CI: 0.1-0.1%, P <0.001). In 2021, MAFLD was estimated to have affected 1.3 billion people worldwide. Significant uptrends were observed in all regions, super regions, and SDI categories. The fastest increase from 1990 to 2021 and the highest prevalence rate in 2021 were experienced by countries and territories with high-middle and middle SDI. An increase in the prevalence of MAFLD from 1990 to 2021 was demonstrated in all but six countries.
CONCLUSIONS
In 2021, the number of patients affected by MAFLD was doubled compared to 1990, and the prevalence rate increased by over 50%. The burden of MAFLD, as measured by prevalence, was more prominent in countries and territories with middle SDI and in those located in North African and Middle Eastern, possibly due to changes in lifestyle in these areas over the past 30 years.
Humans
;
Global Burden of Disease
;
Prevalence
;
Male
;
Female
;
Middle Aged
;
Adult
;
Global Health
;
Fatty Liver/epidemiology*
;
Aged
5.A self-cascade nanoCRISPR prompts transcellular penetration to potentiate gene editing and tumor killing.
Chao LIU ; Yangsong XU ; Ning WANG ; Hongyu LIU ; Xi YANG ; Shiyao ZHOU ; Dongxue HUANG ; Yingjie LI ; Yanjie YOU ; Qinjie WU ; Changyang GONG
Acta Pharmaceutica Sinica B 2025;15(11):5933-5944
CRISPR/Cas9-based therapeutics face significant challenges in penetrating the dense microenvironment of solid tumors, resulting in insufficient gene editing and compromised treatment efficacy. Current nanostrategies, which mainly focus on the paracellular pathway attempted to improve gene editing performance, whereas their efficiency remains uneven in the heterogenous extracellular matrix. Here, the nanoCRISPR system is prepared with self-cascading mechanisms for gene editing-mediated robust apoptosis and transcellular penetration. NanoCRISPR unlocks its self-cascade capability within the matrix metallopeptidase 2-enriched tumor microenvironment, initiating the transcellular penetration. By facilitating cellular uptake, nanoCRISPR triggers robust apoptosis in edited malignancies, promoting further transcellular penetration and amplifying gene editing in neighboring tumor cells. Benefiting from self-cascade between robust apoptosis and transcellular penetration, nanoCRISPR demonstrates continuous gene transfection/tumor killing performance (transfection/apoptosis efficiency: 1st round: 85%/84.2%; 2nd round: 48%/27%) and homogeneous penetration. In xenograft tumor-bearing mice, nanoCRISPR treatment achieves remarkable anti-tumor efficacy (∼83%) and significant survival benefits with minimal toxicity. This strategy presents a promising paradigm emphasizing transcellular penetration to enhance the effectiveness of CRISPR-based antitumor therapeutics.
6.Asiaticoside alleviates myocardial ischemia-reperfusion injury in rats by inhibiting NLRP3 inflammasome-mediated pyroptosis.
Fenlan BIAN ; Shiyao NI ; Peng ZHAO ; Maonanxing QI ; Bi TANG ; Hongju WANG ; Pinfang KANG ; Jinjun LIU
Journal of Southern Medical University 2025;45(5):977-985
OBJECTIVES:
To study the mechanism mediating the protective effect of asiaticoside (AS) against myocardial ischemia-reperfusion injury (MIRI) in rats.
METHODS:
Fifty SD rats were randomized into sham-operated group, MIRI model group and AS treatment group. AS treatment was administered at low, moderate and high doses by daily gavage for 2 weeks before MIRI modeling (n=10). Serum levels of lactate dehydrogenase (LDH), creatine kinase isoenzyme (CK-MB), interleukin-18 (IL-18) and IL-1β, the volume of myocardial infarction and ischemia, and myocardial pathologies of the rats were determined or observed. The protein expression levels of NLRP3, ASC, caspase-1, GSDMD, GSDMD-N, IL-1β and IL-18 in the myocardial tissues were detected using Western blotting. The changes in the expression levels of these proteins were also detected in H9C2 cells with AS pretreatment prior to hypoxia-reoxygenation (H/R) injury.
RESULTS:
The rats models of MIRI exhibited significant myocardial infarction and ischemia with increased serum levels of LDH and CK-MB and myocardial expressions of NLRP3, ASC, caspase-1, GSDMD, GSDMD-N, IL-1β and IL-18. AS pretreatment effectively reduced myocardial infarction volume in the rat models and significantly reduced serum LDH and CK-MB levels and the protein levels in the myocardial tissue in a dose-dependent manner. In the H9C2 cell model of H/R injury, AS pretreatment significantly suppressed the elevation of the protein expressions of NLRP3, ASC, caspase-1, GSDMD, GSDMD-N, IL-1β and IL-18. Molecular docking studies showed that AS had a strong binding affinity with NLRP3.
CONCLUSIONS
Asiaticoside can alleviate MIRI in rats possibly by inhibiting NLRP3 inflammasome-mediated pyroptosis.
Animals
;
Myocardial Reperfusion Injury/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Pyroptosis/drug effects*
;
Rats, Sprague-Dawley
;
Rats
;
Inflammasomes/metabolism*
;
Triterpenes/pharmacology*
;
Interleukin-18/metabolism*
;
Male
;
Interleukin-1beta/metabolism*
;
Caspase 1/metabolism*
7.BnaNRT1.5s mediates nitrate transporter to regulate nitrogen use efficiency in Brassica napus.
Shilong CHEN ; Lei YAO ; Rumeng WANG ; Jian ZENG ; Jianghe LI ; Shiyao CUI ; Xu WANG ; Haixing SONG ; Zhenhua ZHANG ; Pan GONG
Chinese Journal of Biotechnology 2025;41(7):2954-2965
Improving the nitrogen use efficiency (NUE) of Brassica napus is of significant importance for achieving the national goal of zero growth in chemical fertilizer application and ensuring the green development of the rapeseed industry. This study aims to explore the effects of the nitrate transporter gene BnaNRT1.5s on the nitrogen transport and NUE of B. napus, providing excellent genetic resources for the development of nitrogen-efficient B. napus varieties. The spatiotemporal expression of BnaA05.NRT1.5 as a key nitrogen responsive gene was profiled by qRT-PCR at different growth stages and for different tissue samples of B. napus 'Westar'. Subcellular localization was employed to examine its expression pattern in the cells. Additionally, CRISPR/Cas9 was used to create BnaNRT1.5s knockout lines, which were subjected to hydroponic experiments under high nitrogen (12.0 mmol/L) and low nitrogen (0.3 mmol/L) conditions. After the seedlings were cultivated for 21 days, root and shoot samples were collected for weighing, nitrogen content determination, xylem sap nitrate content assessment, and calculation of total nitrogen and NUE. The B. napus nitrate transporter BnaA05.NRT1.5 was localized to the cell membrane. During the seedling and early bolting stages, BnaA05.NRT1.5 was predominantly expressed in roots, while it was highly expressed in old leaves and mature silique skin during the reproductive stage. Compared with the wild type, the mutant BnaNRT1.5s showed significant increases in the dry weight and total nitrogen of seedlings under both high and low nitrogen conditions. Under low nitrogen conditions, NUE in the roots of BnaNRT1.5s significantly improved. Notably, under both high and low nitrogen conditions, the nitrate content in the shoots of BnaNRT1.5s decreased significantly, while that in the roots increased significantly, resulting in a significantly decreased shoot-to-root nitrate content ratio. BnaNRT1.5s is involved in regulating the transport of nitrate from the roots to the shoots, and its mutation enhances nitrogen absorption and utilization in B. napus seedlings, promoting seedling growth. This study not only provides references for understanding the physiological and molecular mechanisms by which BnaNRT1.5s regulates NUE but also offers valuable genetic resources for improving NUE in B. napus.
Brassica napus/genetics*
;
Anion Transport Proteins/metabolism*
;
Nitrogen/metabolism*
;
Nitrate Transporters
;
Plant Proteins/metabolism*
;
Nitrates/metabolism*
;
Gene Expression Regulation, Plant
;
Biological Transport
8.High expression of the stemness-associated molecule Nanog in esophageal squamous cell carcinoma tissues promotes tumor invasion and metastasis by activating the TGF-β signaling pathway
Chang SUN ; Shiyao ZHENG ; Mei LI ; Ming YANG ; Mengyuan QIN ; Yuan XU ; Weihua LIANG ; Jianmin HU ; Lianghai WANG ; Feng LI ; Hong ZHOU ; Lan YANG
Journal of Southern Medical University 2024;44(6):1209-1216
Objective To investigate the expression of Nanog and its regulatory relationship with MMP-2/MMP-9 proteins in esophageal squamous cell carcinoma(ESCC).Methods We detected Nanog and MMP-2/MMP-9 protein expressions in 127 ESCC tissues and 82 adjacent normal tissues using immunohistochemistry and explored their correlations with the clinicopathological parameters and prognosis of the patients.GEO database was utilized to analyze the pathways enriched with the stemness-related molecules including Nanog,and TIMER online tool was used to analyze the correlations among TβR1,MMP-2,and MMP-9 in esophageal cancer.Results Nanog and MMP-2/MMP-9 proteins were significantly upregulated in ESCC tissues and positively intercorrelated.Their expression levels were closely correlated with infiltration depth and lymph node metastasis of ESCC but not with age,gender,or tumor differentiation.The patients with high expressions of Nanog and MMP-2/MMP-9 had significantly shorter survival time.Bioinformatics analysis showed enrichment of stemness-associated molecules in the TGF-β signaling pathway,and the expressions of MMP-2/MMP-9 and TβR1 were positively correlated.In cultured ESCC cells,Nanog knockdown significantly decreased the expression of TβR1,p-Smad2/3,MMP-2,and MMP-9 and strongly inhibited cell migration.Conclusion The high expressions of Nanog,MMP-2,and MMP-9,which are positively correlated,are closely related with invasion depth,lymph node metastasis,and prognosis of ESCC.Nanog regulates the expressions of MMP-2/MMP-9 proteins through the TGF-β signaling pathway,and its high expression promotes migration of ESCC cells.
9.Activation of ALDH2 alleviates hypoxic pulmonary hypertension in mice by upregulating the SIRT1/PGC-1α signaling pathway
Lei WANG ; Fenlan BIAN ; Feiyang MA ; Shu FANG ; Zihan LING ; Mengran LIU ; Hongyan SUN ; Chengwen FU ; Shiyao NI ; Xiaoyang ZHAO ; Xinru FENG ; Zhengyu SUN ; Guoqing LU ; Pinfang KANG ; Shili WU
Journal of Southern Medical University 2024;44(10):1955-1964
Objective To investigate whether activation of mitochondrial acetal dehydrogenase 2(ALDH2)alleviates hypoxic pulmonary hypertension by regulating the SIRT1/PGC-1α signaling pathway.Methods Thirty 8-week-old C57 BL/6 mice were randomized into control,hypoxia,and hypoxia+Alda-1(an ALDH2 activator)group(n=10),and the mice in the latter two groups,along with 10 ALDH2 knockout(ALDH2-/-)mice,were exposed to hypoxia(10%O2,90%N2)with or without daily intraperitoneal injection of Alda-1 for 4 weeks.The changes in right ventricular function and pressure(RVSP)of the mice were evaluated by echocardiography and right ventricular catheter test,and pulmonary artery pressure was estimated based on RVSP.Pulmonary vascular remodeling,right ventricular injury,myocardial α-SMA expression,distal pulmonary arteriole muscle normalization,right ventricular cross-sectional area,myocardial cell hypertrophy,and right cardiac hypertrophy index were assessed with HE staining,immunofluorescence staining and WGA staining,and the expressions of ALDH2,SIRT1,PGC-1α,P16INK4A and P21CIP1 were detected.In pulmonary artery smooth muscle cells with hypoxic exposure,the effect of Alda-1 and EX527 on cell senescence and protein expressions was evaluated using β-galactose staining and Western blotting.Results The wild-type mice with hypoxic exposure showed significantly increased RVSP,right ventricular free wall thickness and myocardial expressions of P16INK4A and P21CIP1,which were effectively lowered by treatment with Alda-1 but further increased in ALDH2-/-mice.In cultured pulmonary artery smooth muscle cells,hypoxic exposure significantly increased senescent cell percentage and cellular expressions of P16INK4A and P21CIP1,which were all lowered by treatment with Alda-1,but its effect was obviously attenuated by EX527 treatment.Conclusion ALDH2 alleviates hypoxia-induced senescence of pulmonary artery smooth muscle cells by upregulating the SIRT1/PGC-1α signaling pathway to alleviate pulmonary hypertension in mice.
10.High expression of the stemness-associated molecule Nanog in esophageal squamous cell carcinoma tissues promotes tumor invasion and metastasis by activating the TGF-β signaling pathway
Chang SUN ; Shiyao ZHENG ; Mei LI ; Ming YANG ; Mengyuan QIN ; Yuan XU ; Weihua LIANG ; Jianmin HU ; Lianghai WANG ; Feng LI ; Hong ZHOU ; Lan YANG
Journal of Southern Medical University 2024;44(6):1209-1216
Objective To investigate the expression of Nanog and its regulatory relationship with MMP-2/MMP-9 proteins in esophageal squamous cell carcinoma(ESCC).Methods We detected Nanog and MMP-2/MMP-9 protein expressions in 127 ESCC tissues and 82 adjacent normal tissues using immunohistochemistry and explored their correlations with the clinicopathological parameters and prognosis of the patients.GEO database was utilized to analyze the pathways enriched with the stemness-related molecules including Nanog,and TIMER online tool was used to analyze the correlations among TβR1,MMP-2,and MMP-9 in esophageal cancer.Results Nanog and MMP-2/MMP-9 proteins were significantly upregulated in ESCC tissues and positively intercorrelated.Their expression levels were closely correlated with infiltration depth and lymph node metastasis of ESCC but not with age,gender,or tumor differentiation.The patients with high expressions of Nanog and MMP-2/MMP-9 had significantly shorter survival time.Bioinformatics analysis showed enrichment of stemness-associated molecules in the TGF-β signaling pathway,and the expressions of MMP-2/MMP-9 and TβR1 were positively correlated.In cultured ESCC cells,Nanog knockdown significantly decreased the expression of TβR1,p-Smad2/3,MMP-2,and MMP-9 and strongly inhibited cell migration.Conclusion The high expressions of Nanog,MMP-2,and MMP-9,which are positively correlated,are closely related with invasion depth,lymph node metastasis,and prognosis of ESCC.Nanog regulates the expressions of MMP-2/MMP-9 proteins through the TGF-β signaling pathway,and its high expression promotes migration of ESCC cells.

Result Analysis
Print
Save
E-mail