1.High Expression of INF2 Predicts Poor Prognosis and Promotes Hepatocellular Carcinoma Progression
Hai-Biao WANG ; Man LIN ; Fu-Sang YE ; Jia-Xin SHI ; Hong LI ; Meng YE ; Jie WANG
Progress in Biochemistry and Biophysics 2025;52(1):194-208
ObjectiveINF2 is a member of the formins family. Abnormal expression and regulation of INF2 have been associated with the progression of various tumors, but the expression and role of INF2 in hepatocellular carcinoma (HCC) remain unclear. HCC is a highly lethal malignant tumor. Given the limitations of traditional treatments, this study explored the expression level, clinical value and potential mechanism of INF2 in HCC in order to seek new therapeutic targets. MethodsIn this study, we used public databases to analyze the expression of INF2 in pan-cancer and HCC, as well as the impact of INF2 expression levels on HCC prognosis. Quantitative real time polymerase chain reaction (RT-qPCR), Western blot, and immunohistochemistry were used to detect the expression level of INF2 in liver cancer cells and human HCC tissues. The correlation between INF2 expression and clinical pathological features was analyzed using public databases and clinical data of human HCC samples. Subsequently, the effects of INF2 expression on the biological function and Drp1 phosphorylation of liver cancer cells were elucidated through in vitro and in vivo experiments. Finally, the predictive value and potential mechanism of INF2 in HCC were further analyzed through database and immunohistochemical experiments. ResultsINF2 is aberrantly high expression in HCC samples and the high expression of INF2 is correlated with overall survival, liver cirrhosis and pathological differentiation of HCC patients. The expression level of INF2 has certain diagnostic value in predicting the prognosis and pathological differentiation of HCC. In vivo and in vitro HCC models, upregulated expression of INF2 triggers the proliferation and migration of the HCC cell, while knockdown of INF2 could counteract this effect. INF2 in liver cancer cells may affect mitochondrial division by inducing Drp1 phosphorylation and mediate immune escape by up-regulating PD-L1 expression, thus promoting tumor progression. ConclusionINF2 is highly expressed in HCC and is associated with poor prognosis. High expression of INF2 may promote HCC progression by inducing Drp1 phosphorylation and up-regulation of PD-L1 expression, and targeting INF2 may be beneficial for HCC patients with high expression of INF2.
2.Construction of Tax-PC/SDC/PVP-K30 micelles and their protective effect on alcoholic liver injury
Shi-yu ZHANG ; Jing-meng SUN ; Dong-dong LI ; Xin ZHANG ; Jia-hui ZHANG ; Wei-yu ZHANG
Acta Pharmaceutica Sinica 2025;60(2):488-497
Taxifolin (Tax) has been proved to be a medicinal edible substance with protective effects against alcoholic liver injury, however, its poor hydrophilicity and permeability have hindered the clinical application of Tax. In this study, we prepared taxifolin-phosphatidylcholine/sodium deoxycholate/PVP-K30 micells (Tax-MLs). Box-Behnken test was used to obtain the optimal preparation process, and Tax-MLs were characterised by transmission electron microscopy and fourier transform infrared spectroscopy. Physicochemical parameters such as proximate micelle concentration, equilibrium solubility and oil-water partition coefficient were determined, and the release pattern of Tax-MLs was investigated by
3.Research progress in chemical constituents and processing methods of Aconiti Lateralis Radix Praeparata.
Jia-Hao HU ; Wen-Ru LI ; Qing-Xin SHI ; Cheng-Wu SONG
China Journal of Chinese Materia Medica 2025;50(6):1458-1470
This article aims to study the processing methods by exploring the main chemical constituents of Aconiti Lateralis Radix Praeparata and the toxicity-attenuating mechanisms. The relevant articles were retrieved from multiple databases with the time interval of 1960-2024, and the chemical constituents of Aconiti Lateralis Radix Praeparata and the toxicity-attenuating mechanisms of its processing methods were summarized. The review revealed that the chemical constituents of Aconiti Lateralis Radix Praeparata included 32 diester-type alkaloids, 36 monoester-type alkaloids, 43 alkanolamine-type alkaloids, and 8 lipid-type alkaloids. At the same time, other chemical constituents such as water-soluble alkaloids were also studied, and their pharmacological activities were summarized. The toxicity-attenuating mechanisms of the processing methods included constituent loss, hydrolysis, ester exchange, and ion-pair action. The processing methods of Aconiti Lateralis Radix Praeparata have developed from being traditional to modern, with simplified operation and increased retention amounts of active constituents, which have improved the efficacy of processed Aconiti Lateralis Radix Praeparata products and have facilitated the industrial production. However, the existing processing methods of Aconiti Lateralis Radix Praeparata cannot completely solve the problem of possible reduction in efficacy during toxicity attenuation. More toxicity-attenuating mechanisms and lipid-type alkaloids of Aconiti Lateralis Radix Praeparata should be explored, which is expected to reduce its toxicity while retaining its efficacy.
Aconitum/toxicity*
;
Drugs, Chinese Herbal/isolation & purification*
;
Alkaloids/chemistry*
;
Animals
;
Humans
4.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
5.Evidence mapping of clinical research on traditional Chinese medicine in treatment of renal anemia.
Ke-Xin ZHANG ; Xin LI ; Kai-Li CHEN ; Peng-Tao DONG ; Lu-Yao SHI ; Lin-Qi ZHANG
China Journal of Chinese Materia Medica 2025;50(12):3413-3422
Through evidence mapping, this paper systematically summarized the research evidence on the use of traditional Chinese medicine(TCM) in treating renal anemia, displaying the distribution of evidence in this field. A systematic search was conducted across databases, including CNKI, Wanfang, VIP, SinoMed, Springner, PubMed, Engineering Village, and Web of Science, targeting studies published up to June 30, 2024. The research evidence was summarized and displayed through a combination of graphs, tables, and text. A total of 264 interventional studies, 37 observational studies, and 7 systematic reviews were included. The annual publication volumes related to TCM treatment in renal anemia showed an overall upward trend, with most studies involving sample sizes between 60 and 120 participants(224 articles, 74.42%). Intervention measures were categorized into 21 types, with oral TCM decoctions being the most common medicine(171 times, 56.81%). The use of self-made prescriptions was the most common TCM intervention method. The intervention duration was mainly between 8 weeks and 3 months(239 articles, 79.40%). The most frequently reported TCM syndrome was spleen and kidney Qi deficiency. The top 2 outcome indicators were the anemia indicators and renal injury/renal function markers. However, several issues were identified in these studies, such as insufficient attention to the sources, social/geographical information, and temporal continuity of research subjects in observational research. Randomized controlled trials mostly had a high risk of bias, mainly due to issues such as randomization bias, blinding bias, and failure to register research protocols. The methodology quality of systematic reviews was generally low, mainly due to inadequate inclusion of literature, failure to specify funding sources, and lack of pre-registrations. While the report quality of systematic review was acceptable, there were significant gaps in the reporting of protocols, registration, and funds. The results show that these issues affect the quality of research and the reliability of findings on TCM in treating renal anemia, underscoring the need to address them to conduct higher-quality research and provide more reliable medical evidence for TCM in treating renal anemia.
Humans
;
Anemia/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Kidney Diseases/drug therapy*
6.Effect and mechanism of Bufei Decoction on improving Klebsiella pneumoniae pneumonia in rats by regulating IL-17 signaling pathway.
Li-Na HUANG ; Zheng-Ying QIU ; Xiang-Yi PAN ; Chen LIU ; Si-Fan LI ; Shao-Guang GE ; Xiong-Wei SHI ; Hao CAO ; Rui-Hua XIN ; Fang-di HU
China Journal of Chinese Materia Medica 2025;50(11):3097-3107
Based on the interleukin-17(IL-17) signaling pathway, this study explores the effect and mechanism of Bufei Decoction on Klebsiella pneumoniae pneumonia in rats. SD rats were randomly divided into the control group, model group, Bufei Decoction low-dose group(6.68 g·kg~(-1)·d~(-1)), Bufei Decoction high-dose group(13.36 g·kg~(-1)·d~(-1)), and dexamethasone group(1.04 mg·kg~(-1)·d~(-1)), with 10 rats in each group. A pneumonia model was established by tracheal drip injection of K. pneumoniae. After successful model establishment, the improvement in lung tissue damage was observed following drug administration. Core targets and signaling pathways were screened using transcriptomics techniques. Real-time fluorescence quantitative polymerase chain reaction was used to detect the mRNA expression of core targets interleukin-6(IL-6), interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and chemokine CXC ligand 6(CXCL6). Western blot was used to assess key proteins in the IL-17 signaling pathway, including interleukin-17A(IL-17A), nuclear transcription factor-κB activator 1(Act1), tumor necrosis factor receptor-associated factor 6(TRAF6), and downstream phosphorylated p38 mitogen-activated protein kinase(p-p38 MAPK), and phosphorylated nuclear factor-κB p65(p-NF-κB p65). Apoptosis of lung tissue cells was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling(TUNEL). The results showed that, compared with the control group, the model group exhibited significant pathological damage in lung tissue. The mRNA expression of IL-6, IL-1β, TNF-α, and CXCL6, as well as the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly increased, and the number of apoptotic cells was notably higher, indicating successful model establishment. Compared with the model group, both low-and high-dose groups of Bufei Decoction showed reduced pathological damage in lung tissue. The mRNA expression levels of IL-6, IL-1β, TNF-α, and CXCL6, and the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly decreased, with a significant reduction in apoptotic cells in the high-dose group. In conclusion, Bufei Decoction can effectively improve lung tissue damage and reduce inflammation in rats with K. pneumoniae. The mechanism may involve the regulation of the IL-17 signaling pathway and the reduction of apoptosis.
Animals
;
Interleukin-17/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Rats
;
Male
;
Klebsiella pneumoniae/physiology*
;
Klebsiella Infections/immunology*
;
Humans
;
Lung/drug effects*
7.Quality evaluation of Bidentis Herba based on HPLC fingerprint, multi-component content determination, and chemometrics.
Guo-Li SHI ; Xin-Feng WANG ; Wei-Qun LI ; Jian-Wei FAN ; Yong-Xia GUAN
China Journal of Chinese Materia Medica 2025;50(14):3944-3950
This study established the HPLC fingerprints and a multi-component content determination method for Bidens pilosa var. radiata and B. pilosa and conducted comprehensive evaluation by integrating fingerprint similarity comparison, cluster analysis(CA), and principal component analysis(PCA), aiming to provide a reference for the establishment of quality standards for Bidentis Herba. HPLC was launched on an Agilent Poroshell 120 EC-C_(18) chromatographic column(4.6 mm×250 mm, 4 μm) by gradient elution with a mobile phase of 0.1% aqueous phosphoric acid-acetonitrile at a flow rate of 0.7 mL·min~(-1), detection wavelength of 270 nm, column temperature of 25 ℃, and an injection volume of 5 μL. The fingerprint similarity of 20 batches of Bidentis Herba ranged from 0.775 to 0.979. A total of 20 common peaks were identified, and seven components were confirmed through comparison with reference substances: neochlorogenic acid, chlorogenic acid, isochlorogenic acid A, isochlorogenic acid B, isochlorogenic acid C, rutin, and hyperoside. These seven components exhibited good linearity within the ranges of 3.4-67.4, 33.0-660.3, 26.6-531.2, 3.5-70.5, 6.2-124.9, 2.4-48.3, and 4.6-91.5 μg·mL~(-1), respectively, with correlation coefficients(r) greater than 0.999. The average recovery rates ranged from 96.47% to 104.6%. CA and PCA classified the 20 batches of Bidentis Herba into two categories. PCA yielded two principal components, with a cumulative variance contribution rate of 80.557%. The established HPLC fingerprints and multi-component content determination method are simple and accurate, providing a scientific basis for the quality control and quality standard formulation of Bidentis Herba.
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Chemometrics/methods*
;
Bidens/chemistry*
;
Principal Component Analysis
8.Mechanism of Mingshi Prescription in Regulating Opn4-dopamine Axis to Inhibit Endoplasmic Reticulum Stress and Delay Myopia Progression
Baohua LI ; Zefeng KANG ; Lulu WANG ; Xin YAN ; Jianquan WANG ; Xinyue HOU ; Bobiao NING ; Shanshan YE ; Mengyu LIU ; Yipeng SHI ; Danyu LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):58-67
ObjectiveTo investigate the mechanism by which Mingshi prescription regulates the retinal melanopsin-dopamine (Opn4-DA) axis in myopic mice to inhibit endoplasmic reticulum (ER) stress in the retina and sclera, thereby delaying axial elongation associated with myopia. MethodsSixty 4-week-old male SPF-grade C57BL/6J mice were randomly divided into a normal group, a form-deprived myopia group (FDM group), an intrinsically photosensitive retinal ganglion cells ablation group (ipRGCs group), a Mingshi Prescription group (MSF group, 5.2 g·kg-1), and an ipRGCs + MSF group (5.2 g·kg-1). Except for the normal group, all other groups underwent FDM modeling. Additionally, the ipRGCs and ipRGCs + MSF groups received retinal ipRGC ablation. Three weeks after modeling, the MSF and ipRGCs + MSF groups were administered Mingshi prescription via continuous gavage for six weeks. After refraction and axial length were measured in all mice, eyeballs were collected along with retinal and scleral tissues. Pathological and morphological changes in the retina, choroid, and sclera were observed using periodic acid-Schiff (PAS) staining. Western blot was employed to detect the relative protein expression levels of dopamine D1 receptor (DRD1), C/EBP homologous protein (CHOP), and glucose-regulated protein 78 (GRP78) in the retina, and CHOP and GRP78 in the sclera. Real-time PCR was used to detect the relative mRNA expression of Opn4, CHOP, and GRP78 in the retina, and CHOP and GRP78 in the sclera. Immunofluorescence staining (IF) was performed to detect the expression of Opn4 and DRD1 in retinal tissues. ResultsCompared with the normal group, the FDM group showed a significant myopic shift in refraction (P<0.05) and a significant increase in axial length (P<0.05). The retinal layers were thinner, the number of ganglion cells was reduced, and collagen fibers in the sclera were loosely arranged with evident gaps. Opn4 and DRD1 protein and mRNA expression in the retina were significantly decreased (P<0.05), while CHOP and GRP78 protein and mRNA expression in both retinal and scleral tissues were significantly increased (P<0.05). Compared with the FDM group, the ipRGCs group exhibited further increases in myopic refraction and axial length (P<0.05), more pronounced thinning and looseness in the retinal, choroidal, and scleral layers, lower expression of Opn4 and DRD1 protein and mRNA in the retina (P<0.05), and higher expression of CHOP and GRP78 protein and mRNA in the retina and sclera (P<0.05). Compared with the FDM group, the MSF group showed significantly reduced refractive error and axial length (P<0.05), with improved cellular number, arrangement, and thickness in ocular tissues, increased Opn4 and DRD1 protein and mRNA expression in the retina (P<0.05), and reduced CHOP and GRP78 protein and mRNA expression in both retina and sclera (P<0.05). Similarly, the ipRGCs + MSF group showed significant improvements in terms of the above items compared with the ipRGCs group (P<0.05). ConclusionMingshi Prescription delays myopic axial elongation and refractive progression by regulating the Opn4-DA axis in the retina of myopic mice, thereby inhibiting ER stress in the retina and sclera. This intervention promotes Qi and blood nourishment of the eyes, softens the fascia, and restores ocular rhythm.
9.Residual Inflammatory Risk and Intracranial Atherosclerosis Plaque Vulnerability: Insights From High-Resolution Magnetic Resonance Imaging
Ying YU ; Rongrong CUI ; Xin HE ; Xinxin SHI ; Zhikai HOU ; Yuesong PAN ; Mingyao LI ; Jiabao YANG ; Zhongrong MIAO ; Yongjun WANG ; Rong WANG ; Xin LOU ; Long YAN ; Ning MA
Journal of Stroke 2025;27(2):207-216
Background:
and Purpose This study aimed to investigate the association between residual inflammatory risk (RIR) and vulnerable plaques using high-resolution magnetic resonance imaging (HRMRI) in symptomatic intracranial atherosclerotic stenosis (ICAS).
Methods:
This retrospective study included 70%–99% symptomatic ICAS patients hospitalized from January 2016 to December 2022. Patients were classified into four groups based on high-sensitivity C-reactive protein (hs-CRP) and low-density lipoprotein cholesterol (LDL-C): residual cholesterol inflammatory risk (RCIR, hs-CRP ≥3 mg/L and LDL-C ≥2.6 mmol/L), RIR (hs-CRP ≥3 mg/L and LDL-C <2.6 mmol/L), residual cholesterol risk (RCR, hs-CRP <3 mg/L and LDL-C ≥2.6 mmol/L), and no residual risk (NRR, hs-CRP <3 mg/L and LDL-C <2.6 mmol/L). Vulnerable plaque features on HRMRI included positive remodeling, diffuse distribution, intraplaque hemorrhage, and strong enhancement.
Results:
Among 336 included patients, 21, 60, 58, and 197 were assigned to the RCIR, RIR, RCR, and NRR groups, respectively. Patients with RCIR (adjusted odds ratio [aOR], 3.606; 95% confidence interval [CI], 1.346–9.662; P=0.011) and RIR (aOR, 3.361; 95% CI, 1.774–6.368, P<0.001) had higher risks of strong enhancement than those with NRR. Additionally, patients with RCIR (aOR, 2.965; 95% CI, 1.060–8.297; P=0.038) were more likely to have intraplaque hemorrhage compared with those with NRR. In the sensitivity analysis, RCR (aOR, 2.595; 95% CI, 1.201–5.608; P=0.015) exhibited an additional correlation with an increased risk of intraplaque hemorrhage.
Conclusion
In patients with symptomatic ICAS, RIR is associated with a higher risk of intraplaque hemorrhage and strong enhancement, indicating an increased vulnerability to atherosclerotic plaques.
10.Residual Inflammatory Risk and Intracranial Atherosclerosis Plaque Vulnerability: Insights From High-Resolution Magnetic Resonance Imaging
Ying YU ; Rongrong CUI ; Xin HE ; Xinxin SHI ; Zhikai HOU ; Yuesong PAN ; Mingyao LI ; Jiabao YANG ; Zhongrong MIAO ; Yongjun WANG ; Rong WANG ; Xin LOU ; Long YAN ; Ning MA
Journal of Stroke 2025;27(2):207-216
Background:
and Purpose This study aimed to investigate the association between residual inflammatory risk (RIR) and vulnerable plaques using high-resolution magnetic resonance imaging (HRMRI) in symptomatic intracranial atherosclerotic stenosis (ICAS).
Methods:
This retrospective study included 70%–99% symptomatic ICAS patients hospitalized from January 2016 to December 2022. Patients were classified into four groups based on high-sensitivity C-reactive protein (hs-CRP) and low-density lipoprotein cholesterol (LDL-C): residual cholesterol inflammatory risk (RCIR, hs-CRP ≥3 mg/L and LDL-C ≥2.6 mmol/L), RIR (hs-CRP ≥3 mg/L and LDL-C <2.6 mmol/L), residual cholesterol risk (RCR, hs-CRP <3 mg/L and LDL-C ≥2.6 mmol/L), and no residual risk (NRR, hs-CRP <3 mg/L and LDL-C <2.6 mmol/L). Vulnerable plaque features on HRMRI included positive remodeling, diffuse distribution, intraplaque hemorrhage, and strong enhancement.
Results:
Among 336 included patients, 21, 60, 58, and 197 were assigned to the RCIR, RIR, RCR, and NRR groups, respectively. Patients with RCIR (adjusted odds ratio [aOR], 3.606; 95% confidence interval [CI], 1.346–9.662; P=0.011) and RIR (aOR, 3.361; 95% CI, 1.774–6.368, P<0.001) had higher risks of strong enhancement than those with NRR. Additionally, patients with RCIR (aOR, 2.965; 95% CI, 1.060–8.297; P=0.038) were more likely to have intraplaque hemorrhage compared with those with NRR. In the sensitivity analysis, RCR (aOR, 2.595; 95% CI, 1.201–5.608; P=0.015) exhibited an additional correlation with an increased risk of intraplaque hemorrhage.
Conclusion
In patients with symptomatic ICAS, RIR is associated with a higher risk of intraplaque hemorrhage and strong enhancement, indicating an increased vulnerability to atherosclerotic plaques.

Result Analysis
Print
Save
E-mail