1.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
2.Mechanism of Yizhi Qingxin Prescription in Regulating PKA/CaN Pathway to Improve Cognitive Function in Alzheimer's Disease Model Mice
Xiaochen GUO ; Jiangang LIU ; Dandan SHI ; Ziqi NING ; Yaoyao ZHANG ; Fang LIU ; Meixia LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):97-108
ObjectiveTo explore the mechanism by which Yizhi Qingxin prescription improves mitochondrial dysfunction in Alzheimer's disease (AD) through regulating mitochondrial Ca2+ homeostasis and kinetic balance based on the protein kinase A (PKA)/calcineurin (CaN) signaling pathway. MethodsSixty three-month-old amyloid precursor protein (APP)/presenilin 1 (PS1) double transgenic mice were randomly divided into a model group, a donepezil group(0.65 mg·kg-1), a low-dose Yizhi Qingxin prescription group (YQF-L,2.6 g·kg-1), a medium-dose Yizhi Qingxin prescription group (YQF-M,5.2 g·kg-1), and a high-dose Yizhi Qingxin prescription group (YQF-H,10.4 g·kg-1), with 12 mice in each group. Twelve C57BL/6J mice with the same genetic background served as a normal group. Each treatment group received gavage administration daily, with the model and normal groups receiving equal volume of physiological saline. Intervention continued for 12 consecutive weeks. The learning and memory abilities of the mice were assessed using the novel object recognition (NOR) and Morris water maze (MWM) tests. Hematoxylin-eosin (HE)/Nissl staining was used to observe histopathological changes in the hippocampus. Transmission electron microscopy (TEM) was used to observe mitochondrial ultrastructure. Fluo-4 acetoxymethyl ester (Fluo-4 AM) Ca2+ probe was used to measure intracellular Ca2+ concentration in brain tissue. Western blot was used to determine the protein expression of PKA, CaN, sodium/calcium/lithium exchanger (NCLX), mitochondrial calcium uniporter (MCU), calmodulin (CaM), dynamin-related protein 1 (Drp1), and phosphorylated dynamin-related protein 1 (serine 637 site) [p-Drp1(S637)] in the hippocampus. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to measure the expression of PKA, CaN, CaM, NCLX, MCU, and Drp1 mRNAs. ResultsCompared with those in the normal group, the recognition index (RI) of the model group decreased (P0.01), and the number of crossings through the original platform area, the duration of stay in the target quadrant, and the distance were reduced (P0.01). The protein expression of PKA, NCLX, and p-DRP1 (ser637) significantly decreased (P0.05), and the mRNA expression of PKA and NCLX significantly decreased (P0.05). The escape latency (EL) was prolonged (P0.05), and the intracellular Ca2+ level significantly increased (P0.01). The protein expression of CaN, CaM, MCU, and Drp1, as well as the mRNA expression of CaN, MCU, and Drp1, significantly increased (P0.05). After intervention with Donepezil and Yizhi Qingxin prescription, compared with that in the model group, the RI of the treatment group significantly increased (P0.05), and the number of crossings through the platform and the duration of stay in the target quadrant significantly increased (P0.05). The protein expression of PKA, NCLX, and p-Drp1 (ser637) and the mRNA expression of PKA and NCLX significantly increased (P0.05). On the 4th and 5th days, the EL was shortened (P0.05), and the intracellular Ca2+ level decreased (P0.05). The protein expression of CaN, CaM, MCU, and Drp1 and the mRNA expression of CaN, MCU, and Drp1 significantly decreased (P0.05). ConclusionYizhi Qingxin prescription regulates the PKA/CaN pathway, upregulates the expression of PKA, NCLX, and p-Drp1 (ser637) proteins, reduces the expression of CaN, CaM, MCU, and Drp1 proteins, and regulates Ca2+ homeostasis and mitochondrial dynamic balance, thereby enhancing the spatial learning and memory abilities of AD mice.
3.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
4.Mechanism of Yizhi Qingxin Prescription in Regulating PKA/CaN Pathway to Improve Cognitive Function in Alzheimer's Disease Model Mice
Xiaochen GUO ; Jiangang LIU ; Dandan SHI ; Ziqi NING ; Yaoyao ZHANG ; Fang LIU ; Meixia LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):97-108
ObjectiveTo explore the mechanism by which Yizhi Qingxin prescription improves mitochondrial dysfunction in Alzheimer's disease (AD) through regulating mitochondrial Ca2+ homeostasis and kinetic balance based on the protein kinase A (PKA)/calcineurin (CaN) signaling pathway. MethodsSixty three-month-old amyloid precursor protein (APP)/presenilin 1 (PS1) double transgenic mice were randomly divided into a model group, a donepezil group(0.65 mg·kg-1), a low-dose Yizhi Qingxin prescription group (YQF-L,2.6 g·kg-1), a medium-dose Yizhi Qingxin prescription group (YQF-M,5.2 g·kg-1), and a high-dose Yizhi Qingxin prescription group (YQF-H,10.4 g·kg-1), with 12 mice in each group. Twelve C57BL/6J mice with the same genetic background served as a normal group. Each treatment group received gavage administration daily, with the model and normal groups receiving equal volume of physiological saline. Intervention continued for 12 consecutive weeks. The learning and memory abilities of the mice were assessed using the novel object recognition (NOR) and Morris water maze (MWM) tests. Hematoxylin-eosin (HE)/Nissl staining was used to observe histopathological changes in the hippocampus. Transmission electron microscopy (TEM) was used to observe mitochondrial ultrastructure. Fluo-4 acetoxymethyl ester (Fluo-4 AM) Ca2+ probe was used to measure intracellular Ca2+ concentration in brain tissue. Western blot was used to determine the protein expression of PKA, CaN, sodium/calcium/lithium exchanger (NCLX), mitochondrial calcium uniporter (MCU), calmodulin (CaM), dynamin-related protein 1 (Drp1), and phosphorylated dynamin-related protein 1 (serine 637 site) [p-Drp1(S637)] in the hippocampus. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to measure the expression of PKA, CaN, CaM, NCLX, MCU, and Drp1 mRNAs. ResultsCompared with those in the normal group, the recognition index (RI) of the model group decreased (P0.01), and the number of crossings through the original platform area, the duration of stay in the target quadrant, and the distance were reduced (P0.01). The protein expression of PKA, NCLX, and p-DRP1 (ser637) significantly decreased (P0.05), and the mRNA expression of PKA and NCLX significantly decreased (P0.05). The escape latency (EL) was prolonged (P0.05), and the intracellular Ca2+ level significantly increased (P0.01). The protein expression of CaN, CaM, MCU, and Drp1, as well as the mRNA expression of CaN, MCU, and Drp1, significantly increased (P0.05). After intervention with Donepezil and Yizhi Qingxin prescription, compared with that in the model group, the RI of the treatment group significantly increased (P0.05), and the number of crossings through the platform and the duration of stay in the target quadrant significantly increased (P0.05). The protein expression of PKA, NCLX, and p-Drp1 (ser637) and the mRNA expression of PKA and NCLX significantly increased (P0.05). On the 4th and 5th days, the EL was shortened (P0.05), and the intracellular Ca2+ level decreased (P0.05). The protein expression of CaN, CaM, MCU, and Drp1 and the mRNA expression of CaN, MCU, and Drp1 significantly decreased (P0.05). ConclusionYizhi Qingxin prescription regulates the PKA/CaN pathway, upregulates the expression of PKA, NCLX, and p-Drp1 (ser637) proteins, reduces the expression of CaN, CaM, MCU, and Drp1 proteins, and regulates Ca2+ homeostasis and mitochondrial dynamic balance, thereby enhancing the spatial learning and memory abilities of AD mice.
5.Epidemiological characteristics and influencing factors of severe fever with thrombocytopenia syndrome in Zhejiang Province
LÜ ; Jing ; XU Xinying ; QIAO Yingyi ; SHI Xinglong ; YUE Fang ; LIU Ying ; CHENG Chuanlong ; ZHANG Yuqi ; SUN Jimin ; LI Xiujun
Journal of Preventive Medicine 2026;38(1):10-14
Objective:
To analyze the epidemiological characteristics and influencing factors of severe fever with thrombocytopenia syndrome (SFTS) in Zhejiang Province from 2019 to 2023, so as to provide the reference for strengthening SFTS prevention and control.
Methods:
Data on laboratory-confirmed SFTS cases in Zhejiang Province from 2019 to 2023 were collected through the Infectious Disease Reporting Information System of Chinese Disease Prevention and Control Information System. Meteorological data, geographic environment and socioeconomic factors during the same period were collected from the fifth-generation European Centre for Medium-Range Weather Forecasts, Geospatial Data Cloud, and Zhejiang Statistical Yearbook, respectively. Descriptive epidemiological methods were used to analyze the epidemiological characteristics of SFTS from 2019 to 2023, and a Bayesian spatio-temporal model was constructed to analyze the influencing factors of SFTS incidence.
Results:
A total of 578 SFTS cases were reported in Zhejiang Province from 2019 to 2023, with an annual average incidence of 0.23/105. The peak period was from May to July, accounting for 52.60%. There were 309 males and 269 females, with a male-to-female ratio of 1.15∶1. The cases were mainly aged 50-<80 years, farmers, and in rural areas, accounting for 82.53%, 77.34%, and 75.43%, respectively. Taizhou City and Shaoxing City reported more SFTS cases, while Shaoxing City and Zhoushan City had higher annual average incidences of SFTS. The Bayesian spatio-temporal interaction model showed good goodness of fit. The results showed that mean temperature (RR=1.626, 95%CI: 1.111-2.378) and mean wind speed (RR=1.814, 95%CI: 1.321-2.492) were positively correlated with SFTS risk, while altitude (RR=0.432, 95%CI: 0.230-0.829) and population density (RR=0.443, 95%CI: 0.207-0.964) were negatively correlated with SFTS risk.
Conclusions
SFTS in Zhejiang Province peaks from May to July. Middle-aged and elderly people and farmers are high-risk populations. Taizhou City, Shaoxing City, and Zhoushan City are high-incidence areas. Mean temperature, mean wind speed, altitude, and population density can all affect the risk of SFTS incidence.
6.Proteomic Analysis of Danlou Tablet in Improving Platelet Function for Treating Coronary Heart Disease with Phlegm-stasis Intermingling Syndrome in Minipigs
Ziyan WANG ; Ying LI ; Aoao WANG ; Hongxu MENG ; Yue SHI ; Yanlei MA ; Guoyuan ZHANG ; Lei LI ; Jianxun LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):41-53
ObjectiveThis paper aims to observe the role of Danlou tablet in treating coronary heart disease (CHD) with phlegm-stasis intermingling syndrome in minipigs by improving platelet function and explore the potential pharmacological mechanism of Danlou tablet in regulating platelet function by using proteomics technology. MethodsThirty Bama minipigs were randomly divided into a normal control group (6 pigs) and a high-fat diet group (24 pigs). After 2 weeks of high-fat diet feeding, the high-fat diet group was randomly subdivided into a model group, an atorvastatin group (1 mg·kg-1), and Danlou tablet groups (0.6 g·kg-1 and 0.3 g·kg-1). All groups continued to receive a high-fat diet for 8 weeks after the procedure. The normal control group was given a regular diet, underwent only coronary angiography, and did not receive an interventional injury procedure. The model group and each administration group were fed a high-fat diet. Two weeks later, they underwent a coronary angiography injury procedure. After the procedure, drugs were mixed into the feed every morning for 8 consecutive weeks, with the minipigs maintained on a continuous high-fat diet during this period. Quantitative proteomics technology was further used to study platelet proteins, and differential proteins were obtained by screening. Bioinformatics analysis was performed to analyze key regulatory proteins and biological pathways involved in the therapeutic effect of Danlou tablet on CHD with phlegm-stasis intermingling syndrome. ResultsCompared with the normal control group, the model group showed a significant increase in total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) of minipigs' serum (P<0.01), a significant shortening in prothrombin time of (PT) (P<0.01), a coagulation function index, and an increase in whole blood viscosity (P<0.01) and platelet aggregation rate (P<0.01). Moreover, the platelet morphology was altered, and the contents of endothelin-1 (ET-1) and nitric oxide (NO) were significantly increased (P<0.01). Hemodynamic parameters were obviously abnormal, including significantly decreased systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), left ventricular systolic pressure (LVSP), and left ventricular maximal positive dp/dt (LV+dp/dtmax) (P<0.01). Left ventricular maximal negative dp/dt (LV-dp/dtmax) was significantly increased (P<0.01). Besides, there were myocardial cell hypertrophy, obvious edematous degeneration, massive interstitial inflammatory cell infiltration, high degree of fibrosis, and coronary endothelial atherosclerosis. TC and TG levels in minipigs' serum were significantly reduced in Danlou tablet groups with 0.6 g·kg-1 and 0.3 g·kg-1 (P<0.05, P<0.01), compared with those in the model group. LDL-C was decreased in the Danlou tablet group with 0.6 g·kg-1 (P<0.05). The whole blood viscosity under low and high shear conditions was significantly reduced in the Danlou tablet group with 0.6 g·kg-1 (P<0.05). In groups with all doses of Danlou tablet, maximum aggregation rate (MAR) and average aggregation rate (AAR) were significantly decreased (P<0.05, P<0.01), and platelets' morphological changes such as pseudopodia extension were reduced. ET-1 levels in the serum were significantly reduced. In the Danlou tablet group with 0.6 g·kg-1, NO level in the serum was reduced (P<0.05). In groups with all doses of Danlou tablet, DBP and MAP were significantly increased (P<0.05). In the Danlou tablet group with 0.6 g·kg-1, LVSP and LV+dp/dtmax were significantly increased (P<0.05, P<0.01), and LV-dp/dtmax was significantly decreased (P<0.05). In groups with all doses of Danlou tablet, edematous degeneration in myocardial tissue was milder, and coronary artery lesion degree was significantly alleviated. Compared with the normal control group, there were 94 differentially expressed proteins in the model group, including 81 up-regulated and 13 down-regulated proteins. Compared with the model group, the Danlou tablet group with 0.6 g·kg-1 showed 174 differentially expressed proteins, including 100 up-regulated and 74 down-regulated proteins. A total of 30 proteins were reversed after Danlou tablet intervention. Bioinformatics analysis revealed that its pharmacological mechanism may exert anti-platelet activation, aggregation, and adhesion effects through biological pathways such as regulation of actin cytoskeleton, platelet activation pathway, Fcγ receptor-mediated phagocytosis, as well as proteins such as growth factor receptor-bound protein 2 (GRB2), Ras-related C3 botulinum toxin substrate 2 (RAC2), RAC1, and heat shock protein 90 alpha family class A member 1 (HSP90AA1). ConclusionDanlou tablet can effectively reduce platelet activation and aggregation, exerting a good therapeutic effect on CHD with phlegm-stasis intermingling syndrome in minipigs. Its pharmacological mechanism may involve regulating biological pathways such as actin cytoskeleton and platelet activation pathway, as well as proteins like GRB2, RAC2, RAC1, and HSP90AA1, thereby exerting a pharmacological effect in anti-platelet activation, aggregation, and adhesion.
7.Exploring Biological Characteristics of Rat Model of Atrial Fibrillation with Phlegm-heat and Blood Stasis Pattern Based on Metabolomics
Ailin HOU ; Yuxuan LIU ; Wenxi YU ; Xing JI ; Chan WU ; Dazhuo SHI ; Ying ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):245-255
ObjectiveTo establish an animal model of atrial fibrillation(AF) that accurately reflects the phlegm-heat and blood stasis(TRYZ) pathogenesis in traditional Chinese medicine. MethodsForty SPF-grade SD rats were randomly assigned using a random number table to the following groups:the control group, the TRYZ+AF group,the AF group and the TRYZ group, with ten rats in each group. The TRYZ+AF and TRYZ groups underwent a high-fat diet combined with intraperitoneal lipopolysaccharide(LPS) injection to simulate the pathological alterations of TRYZ syndrome. Groups TRYZ+AF and AF were induced with acetylcholine-calcium chloride(Ach-CaCl2) via caudal vein injection to induce AF. The control group received no intervention and was maintained under normal conditions. The modeling period lasted 3 weeks. Electrocardiography was used to assess AF episodes and duration, echocardiography evaluated left atrial dimensions and cardiac function, fully automated biochemical analyzer measured the levels of total cholesterol(TC), triglycerides(TG), high-density lipoprotein cholesterol(HDL-C) and low-density lipoprotein cholesterol(LDL-C), hemoreometer analyzed the whole blood viscosity, plasma viscosity, and whole blood reduced viscosity, a coagulation analyzer assessed prothrombin time(PT), activated partial thromboplastin time(APTT), thrombin time(TT), and fibrinogen(FIB), enzyme-linked immunosorbent assay(ELISA) was used to determine the levels of C-reactive protein(CRP), interleukin(IL)-1β, IL-6, IL-17, tumour necrosis factor(TNF)-α, matrix metalloproteinase-9(MMP-9), galectin-3(Gal-3), Collagen Ⅰ, and α-smooth muscle actin(α-SMA). Hematoxylin-eosin(HE) staining and Masson's trichrome staining were used to analyze pathological changes in atrial myocardium, Western blot was employed to detect MMP-9, Collagen Ⅰ and α-SMA protein expression in myocardial tissue, real-time quantitative polymerase chain reaction(Real-time PCR) evaluated fibrous factor gene expression levels. Changes in the TRYZ syndrome were assessed via body weight, tongue color[red(R), green(G), and blue(B)], and rectal temperature. Ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed to detect differential metabolites between the control group and the TRYZ+AF group. ResultsFollowing three weeks of sustained modeling, compared with the control group, rats in the TRYZ+AF and the TRYZ groups exhibited reduced body weight, dry faeces, elevated rectal temperature, dark red tongue, decreased RGB values on the tongue surface, and markedly elevated TC and LDL-C levels(P<0.05, P<0.01). The TRYZ+AF, TRYZ, and AF groups exhibited significantly decreased TT, APTT and PT, along with markedly elevated whole blood viscosity and FIB(P<0.05, P<0.01). Rats in the TRYZ+AF and AF groups exhibited AF rhythm, markedly decreased heart rate, prolonged RR intervals, enlarged left atrium, and significantly reduced ejection fraction and shortening fraction(P<0.05, P<0.01). Serum levels of CRP, IL-1β, IL-6, IL-17, TNF-α, MMP-9, Gal-3, Collagen Ⅰ, and α-SMA were elevated in rats from the TRYZ+AF, TRYZ, and AF groups compared to the control group, with the most pronounced increase observed in the TRYZ+AF group(P<0.05, P<0.01). Histopathology revealed that the collagen fiber deposition in the atrial of rats in the TRYZ+AF, TRYZ and AF groups was higher than that in the control group(P<0.05, P<0.01). Western blot and Real-time PCR results further demonstrated that the protein and mRNA expression levels of MMP-9, Collagen Ⅰ and α-SMA in the myocardial tissue of the TRYZ+AF group were higher than those in the other three groups(P<0.05, P<0.01). Metabolomic analysis revealed 173 differentially expressed metabolites in the TRYZ+AF group and the control group, primarily enriched in pathways such as glycerophospholipid metabolism and glycolysis/gluconeogenesis. ConclusionThis study successfully establishes a rat model of AF integrated with the TRYZ syndrome, demonstrating the pathological process where the interactions of phlegm, heat and stasis jointly trigger tremor, this provides a reliable experimental tool for in-depth research into the biological basis of this disease syndrome.
8.Value of different noninvasive diagnostic models in the diagnosis of esophageal and gastric varices with significant portal hypertension in compensated hepatitis B cirrhosis
Cheng LIU ; Jiayi ZENG ; Mengbing FANG ; Zhiheng CHEN ; Bei GUI ; Fengming ZHAO ; Jingkai YUAN ; Chaozhen ZHANG ; Meijie SHI ; Yubao XIE ; Xiaoling CHI ; Huanming XIAO
Journal of Clinical Hepatology 2025;41(2):263-268
ObjectiveTo investigate the value of different noninvasive diagnostic models in the diagnosis of esophageal and gastric varices since there is a high risk of esophageal and gastric varices in patients with compensated hepatitis B cirrhosis and significant portal hypertension, and to provide a basis for the early diagnosis of esophageal and gastric varices. MethodsA total of 108 patients with significant portal hypertension due to compensated hepatitis B cirrhosis who attended Guangdong Provincial Hospital of Traditional Chinese Medicine from November 2017 to November 2023 were enrolled, and according to the presence or absence of esophageal and gastric varices under gastroscopy, they were divided into esophageal and gastric varices group (GOV group) and non-esophageal and gastric varices group (NGOV group). Related data were collected, including age, sex, imaging findings, and laboratory markers. The chi-square test was used for comparison of categorical data between groups; the least significant difference t-test was used for comparison of normally distributed continuous data between groups, and the Mann-Whitney U test was used for comparison of non-normally distributed continuous data between groups. The receiver operating characteristic (ROC) curve was plotted to evaluate the diagnostic value of five scoring models, i.e., fibrosis-4 (FIB-4), LOK index, LPRI, aspartate aminotransferase-to-platelet ratio index (APRI), and aspartate aminotransferase/alanine aminotransferase ratio (AAR). The binary logistic regression method was used to establish a combined model, and the area under the ROC curve (AUC) was compared between the combined model and each scoring model used alone. The Delong test was used to compare the AUC value between any two noninvasive diagnostic models. ResultsThere were 55 patients in the GOV group and 53 patients in the NGOV group. Compared with the NGOV group, the GOV group had a significantly higher age (52.64±1.44 years vs 47.96±1.68 years, t=0.453, P<0.05) and significantly lower levels of alanine aminotransferase [42.00 (24.00 — 17.00) U/L vs 82.00 (46.00 — 271.00) U/L, Z=-3.065, P<0.05], aspartate aminotransferase [44.00 (32.00 — 96.00) U/L vs 62.00 (42.50 — 154.50) U/L,Z=-2.351, P<0.05], and platelet count [100.00 (69.00 — 120.00)×109/L vs 119.00 (108.50 — 140.50)×109/L, Z=-3.667, P<0.05]. The ROC curve analysis showed that FIB-4, LOK index, LPRI, and AAR used alone had an accuracy of 0.667, 0.681, 0.730, and 0.639, respectively, in the diagnosis of esophageal and gastric varices (all P<0.05), and the positive diagnostic rates of GOV were 69.97%, 65.28%, 67.33%, and 58.86%, respectively, with no significant differences in AUC values (all P>0.05), while APRI used alone had no diagnostic value (P>0.05). A combined model (LAF) was established based on the binary logistic regression analysis and had an AUC of 0.805 and a positive diagnostic rate of GOV of 75.80%, with a significantly higher AUC than FIB-4, LOK index, LPRI, and AAR used alone (Z=-2.773,-2.479,-2.206, and-2.672, all P<0.05). ConclusionFIB-4, LOK index, LPRI, and AAR have a similar diagnostic value for esophageal and gastric varices in patients with compensated hepatitis B cirrhosis and significant portal hypertension, and APRI alone has no diagnostic value. The combined model LAF had the best diagnostic efficacy, which provides a certain reference for clinical promotion and application.
9.Protective Effect of Xuebijing on Lung Injury in Rats with Severe Acute Pancreatitis by Blocking FPRs/NLRP3 Inflammatory Pathway
Guixian ZHANG ; Dawei LIU ; Xia LI ; Xijing LI ; Pengcheng SHI ; Zhiqiao FENG ; Jun CAI ; Wenhui ZONG ; Xiumei ZHAO ; Hongbin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):113-120
ObjectiveTo explore the therapeutic effect of Xuebijing injection (XBJ) on severe acute pancreatitis induced acute lung injury (SAP-ALI) by regulating formyl peptide receptors (FPRs)/nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammatory pathway. MethodsSixty rats were randomly divided into a sham group, a SAP-ALI model group, low-, medium-, and high-dose XBJ groups (4, 8, and 12 mL·kg-1), and a positive drug (BOC2, 0.2 mg·kg-1) group. For the sham group, the pancreas of rats was only gently flipped after laparotomy, and then the abdomen was closed, while for the remaining five groups, SAP-ALI rat models were established by retrograde injection of 5% sodium taurocholate (Na-Tc) via the biliopancreatic duct. XBJ and BOC2 were administered via intraperitoneal injection once daily for 3 d prior to modeling and 0.5 h after modeling. Blood was collected from the abdominal aorta 6 h after the completion of modeling, and the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) in plasma was measured by enzyme-linked immunosorbent assay (ELISA). The amount of ascites was measured, and the dry-wet weight ratios of pancreatic and lung tissue were determined. Pancreatic and lung tissue was taken for hematoxylin-eosin (HE) staining to observe pathological changes and then scored. The protein expression levels of FPR1, FPR2, and NLRP3 in lung tissue were detected by the immunohistochemical method. Western blot was used to detect the expression of FPR1, FPR2, and NLRP3 in lung tissue. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of FPR1, FPR2, and NLRP3 in lung tissue. ResultsCompared with the sham group, the SAP-ALI model group showed significantly decreased dry-wet weight ratio of lung tissue (P<0.01), serious pathological changes of lung tissue, a significantly increased pathological score (P<0.01), and significantly increased protein and mRNA expression levels of FPR1, FPR2, and NLRP3 in lung tissue (P<0.01). After BOC2 intervention, the above detection indicators were significantly reversed (P<0.01). After treatment with XBJ, the groups of different XBJ doses achieved results consistent with BOC2 intervention. ConclusionXBJ can effectively improve the inflammatory response of the lungs in SAP-ALI rats and reduce damage. The mechanism may be related to inhibiting the expression of FPRs and NLRP3 in lung tissue, which thereby reduces IL-1β and simultaneously antagonize the release of inflammatory factors IL-6 and TNF-α.
10.Proteomics combined with bioinformatics analysis of protein markers of dry eye
Yanting YANG ; Yajun SHI ; Guang YANG ; Haiyang JI ; Jie LIU ; Jue HONG ; Dan ZHANG ; Xiaopeng MA
International Eye Science 2025;25(1):104-111
AIM:To analyze differential proteins associated with the pathogenesis of dry eye(DE)using bioinformatics methods, in order to reveal their potential molecular mechanisms.METHODS: Articles published in PubMed and EMBASE databases from the inception of the database to August 31, 2023, that used proteomic methods to detect protein expression in clinical samples of dry eye were searched. Differential proteins were selected and further analyzed using the STRING database and Cytoscape software for hub gene screening and module analysis. Protein-protein interaction(PPI)analysis, gene ontology(GO)functional annotation, and Kyoto encyclopedia of genes and genomes(KEGG)pathway enrichment analysis were performed.RESULTS: A total of 21 articles were included, identifying 74 differentially expressed proteins. The most frequently occurring differential proteins were calgranulin A(SA1008), lipocalin-1(LCN1), lysozyme C(LYZ), mammaglobin-B(SCGB2A1), proline-rich protein 4(PRR4), transferrin(TF), and calgranulinB(S100A9). The top 10 hub genes were serum albumin(ALB), tumor necrosis factor(TNF), interleukin 6(IL6), IL1B, IL8, matrix metalloproteinase 9(MMP9), alpha-1-antitrypsin(SERPINA1), IL10, complement component 3(C3), and lactotransferrin(LTF). Module analysis suggested MMP9 and PRR4 as seed genes. KEGG analysis showed that differential proteins were mainly enriched in the IL17 signaling pathway(61.9%).CONCLUSION: The results reveal potential molecular targets and pathways for DE and confirm the association between the pathogenesis of DE and inflammation. Further in-depth research is needed to confirm the significance of these biomarkers in clinical practice.


Result Analysis
Print
Save
E-mail