1.Exploring Biological Characteristics of Rat Model of Atrial Fibrillation with Phlegm-heat and Blood Stasis Pattern Based on Metabolomics
Ailin HOU ; Yuxuan LIU ; Wenxi YU ; Xing JI ; Chan WU ; Dazhuo SHI ; Ying ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):245-255
ObjectiveTo establish an animal model of atrial fibrillation(AF) that accurately reflects the phlegm-heat and blood stasis(TRYZ) pathogenesis in traditional Chinese medicine. MethodsForty SPF-grade SD rats were randomly assigned using a random number table to the following groups:the control group, the TRYZ+AF group,the AF group and the TRYZ group, with ten rats in each group. The TRYZ+AF and TRYZ groups underwent a high-fat diet combined with intraperitoneal lipopolysaccharide(LPS) injection to simulate the pathological alterations of TRYZ syndrome. Groups TRYZ+AF and AF were induced with acetylcholine-calcium chloride(Ach-CaCl2) via caudal vein injection to induce AF. The control group received no intervention and was maintained under normal conditions. The modeling period lasted 3 weeks. Electrocardiography was used to assess AF episodes and duration, echocardiography evaluated left atrial dimensions and cardiac function, fully automated biochemical analyzer measured the levels of total cholesterol(TC), triglycerides(TG), high-density lipoprotein cholesterol(HDL-C) and low-density lipoprotein cholesterol(LDL-C), hemoreometer analyzed the whole blood viscosity, plasma viscosity, and whole blood reduced viscosity, a coagulation analyzer assessed prothrombin time(PT), activated partial thromboplastin time(APTT), thrombin time(TT), and fibrinogen(FIB), enzyme-linked immunosorbent assay(ELISA) was used to determine the levels of C-reactive protein(CRP), interleukin(IL)-1β, IL-6, IL-17, tumour necrosis factor(TNF)-α, matrix metalloproteinase-9(MMP-9), galectin-3(Gal-3), Collagen Ⅰ, and α-smooth muscle actin(α-SMA). Hematoxylin-eosin(HE) staining and Masson's trichrome staining were used to analyze pathological changes in atrial myocardium, Western blot was employed to detect MMP-9, Collagen Ⅰ and α-SMA protein expression in myocardial tissue, real-time quantitative polymerase chain reaction(Real-time PCR) evaluated fibrous factor gene expression levels. Changes in the TRYZ syndrome were assessed via body weight, tongue color[red(R), green(G), and blue(B)], and rectal temperature. Ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed to detect differential metabolites between the control group and the TRYZ+AF group. ResultsFollowing three weeks of sustained modeling, compared with the control group, rats in the TRYZ+AF and the TRYZ groups exhibited reduced body weight, dry faeces, elevated rectal temperature, dark red tongue, decreased RGB values on the tongue surface, and markedly elevated TC and LDL-C levels(P<0.05, P<0.01). The TRYZ+AF, TRYZ, and AF groups exhibited significantly decreased TT, APTT and PT, along with markedly elevated whole blood viscosity and FIB(P<0.05, P<0.01). Rats in the TRYZ+AF and AF groups exhibited AF rhythm, markedly decreased heart rate, prolonged RR intervals, enlarged left atrium, and significantly reduced ejection fraction and shortening fraction(P<0.05, P<0.01). Serum levels of CRP, IL-1β, IL-6, IL-17, TNF-α, MMP-9, Gal-3, Collagen Ⅰ, and α-SMA were elevated in rats from the TRYZ+AF, TRYZ, and AF groups compared to the control group, with the most pronounced increase observed in the TRYZ+AF group(P<0.05, P<0.01). Histopathology revealed that the collagen fiber deposition in the atrial of rats in the TRYZ+AF, TRYZ and AF groups was higher than that in the control group(P<0.05, P<0.01). Western blot and Real-time PCR results further demonstrated that the protein and mRNA expression levels of MMP-9, Collagen Ⅰ and α-SMA in the myocardial tissue of the TRYZ+AF group were higher than those in the other three groups(P<0.05, P<0.01). Metabolomic analysis revealed 173 differentially expressed metabolites in the TRYZ+AF group and the control group, primarily enriched in pathways such as glycerophospholipid metabolism and glycolysis/gluconeogenesis. ConclusionThis study successfully establishes a rat model of AF integrated with the TRYZ syndrome, demonstrating the pathological process where the interactions of phlegm, heat and stasis jointly trigger tremor, this provides a reliable experimental tool for in-depth research into the biological basis of this disease syndrome.
2.Clinical Efficacy of Tangning Tongluo Tablets for Nonproliferative Diabetic Retinopathy
Fuwen ZHANG ; Junguo DUAN ; Wen XIA ; Tiantian SUN ; Yuheng SHI ; Shicui MEI ; Xiangxia LUO ; Xing LI ; Yujie PAN ; Yong DENG ; Chuanlian RAN ; Hao CHEN ; Li PEI ; Shuyu YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):132-139
ObjectiveTo observe the clinical efficacy and safety of Tangning Tongluo tablets in the treatment of nonproliferative diabetic retinopathy (DR). MethodsFourteen research centers participated in this study, which spanned a time interval from September 2021 to May 2023. A total of 240 patients with nonproliferative DR were included and randomly assigned into an observation group (120 cases) and a control group (120 cases). The observation group was treated with Tangning Tongluo tablets, and the control group with calcium dobesilate capsules. Both groups were treated for 24 consecutive weeks. The vision, DR progression rate, retinal microhemangioma, hemorrhage area, exudation area, glycosylated hemoglobin (HbA1c) level, and TCM syndrome score were assessed before and after treatment, and the safety was observed. ResultsThe vision changed in both groups after treatment (P<0.05), and the observation group showed higher best corrected visual acuity (BCVA) than the control group (P<0.05). The DR progression was slow with similar rates in the two groups. The fundus hemorrhage area and exudation area did not change significantly after treatment in both groups, while the observation group outperformed the control group in reducing the fundus hemorrhage area and exudation area. There was no significant difference in the number of microhemangiomas between the two groups before treatment. After treatment, the number of microhemangiomas decreased in both the observation group (Z=-1.437, P<0.05) and the control group (Z=-2.238, P<0.05), and it showed no significant difference between the two groups. As the treatment time prolonged, the number of microhemangiomas gradually decreased in both groups. There was no significant difference in the HbA1c level between the two groups before treatment. After treatment, the decline in the HbA1c level showed no significant difference between the two groups. The TCM syndrome score did not have a statistically significant difference between the two groups before treatment. After treatment, neither the TCM syndrome score nor the response rate had significant difference between the two groups. With the extension of the treatment time, both groups showed amelioration of TCM syndrome compared with the baseline. ConclusionTangning Tongluo tablets are safe and effective in the treatment of nonproliferative DR, being capable of improving vision and reducing hemorrhage and exudation in the fundus.
3.Kidney Gastrin/CCKBR Attenuates Type 2 Diabetes Mellitus by Inhibiting SGLT2-Mediated Glucose Reabsorption through Erk/NF-κB Signaling Pathway
Xue ZHANG ; Yuhan ZHANG ; Yang SHI ; Dou SHI ; Min NIU ; Xue LIU ; Xing LIU ; Zhiwei YANG ; Xianxian WU
Diabetes & Metabolism Journal 2025;49(2):194-209
Background:
Both sodium-glucose cotransporters (SGLTs) and Na+/H+ exchangers (NHEs) rely on a favorable Na-electrochemical gradient. Gastrin, through the cholecystokinin B receptor (CCKBR), can induce natriuresis and diuresis by inhibiting renal NHEs activity. The present study aims to unveil the role of renal CCKBR in diabetes through SGLT2-mediated glucose reabsorption.
Methods:
Renal tubule-specific Cckbr-knockout (CckbrCKO) mice and wild-type (WT) mice were utilized to investigate the effect of renal CCKBR on SGLT2 and systemic glucose homeostasis under normal diet, high-fat diet (HFD), and HFD with a subsequent injection of a low dose of streptozotocin. The regulation of SGLT2 expression by gastrin/CCKBR and the underlying mechanism was explored using human kidney (HK)-2 cells.
Results:
CCKBR was downregulated in kidneys of diabetic mice. Compared with WT mice, CckbrCKO mice exhibited a greater susceptibility to obesity and diabetes when subjected to HFD.
4.Kidney Gastrin/CCKBR Attenuates Type 2 Diabetes Mellitus by Inhibiting SGLT2-Mediated Glucose Reabsorption through Erk/NF-κB Signaling Pathway
Xue ZHANG ; Yuhan ZHANG ; Yang SHI ; Dou SHI ; Min NIU ; Xue LIU ; Xing LIU ; Zhiwei YANG ; Xianxian WU
Diabetes & Metabolism Journal 2025;49(2):194-209
Background:
Both sodium-glucose cotransporters (SGLTs) and Na+/H+ exchangers (NHEs) rely on a favorable Na-electrochemical gradient. Gastrin, through the cholecystokinin B receptor (CCKBR), can induce natriuresis and diuresis by inhibiting renal NHEs activity. The present study aims to unveil the role of renal CCKBR in diabetes through SGLT2-mediated glucose reabsorption.
Methods:
Renal tubule-specific Cckbr-knockout (CckbrCKO) mice and wild-type (WT) mice were utilized to investigate the effect of renal CCKBR on SGLT2 and systemic glucose homeostasis under normal diet, high-fat diet (HFD), and HFD with a subsequent injection of a low dose of streptozotocin. The regulation of SGLT2 expression by gastrin/CCKBR and the underlying mechanism was explored using human kidney (HK)-2 cells.
Results:
CCKBR was downregulated in kidneys of diabetic mice. Compared with WT mice, CckbrCKO mice exhibited a greater susceptibility to obesity and diabetes when subjected to HFD.
5.Kidney Gastrin/CCKBR Attenuates Type 2 Diabetes Mellitus by Inhibiting SGLT2-Mediated Glucose Reabsorption through Erk/NF-κB Signaling Pathway
Xue ZHANG ; Yuhan ZHANG ; Yang SHI ; Dou SHI ; Min NIU ; Xue LIU ; Xing LIU ; Zhiwei YANG ; Xianxian WU
Diabetes & Metabolism Journal 2025;49(2):194-209
Background:
Both sodium-glucose cotransporters (SGLTs) and Na+/H+ exchangers (NHEs) rely on a favorable Na-electrochemical gradient. Gastrin, through the cholecystokinin B receptor (CCKBR), can induce natriuresis and diuresis by inhibiting renal NHEs activity. The present study aims to unveil the role of renal CCKBR in diabetes through SGLT2-mediated glucose reabsorption.
Methods:
Renal tubule-specific Cckbr-knockout (CckbrCKO) mice and wild-type (WT) mice were utilized to investigate the effect of renal CCKBR on SGLT2 and systemic glucose homeostasis under normal diet, high-fat diet (HFD), and HFD with a subsequent injection of a low dose of streptozotocin. The regulation of SGLT2 expression by gastrin/CCKBR and the underlying mechanism was explored using human kidney (HK)-2 cells.
Results:
CCKBR was downregulated in kidneys of diabetic mice. Compared with WT mice, CckbrCKO mice exhibited a greater susceptibility to obesity and diabetes when subjected to HFD.
6.Kidney Gastrin/CCKBR Attenuates Type 2 Diabetes Mellitus by Inhibiting SGLT2-Mediated Glucose Reabsorption through Erk/NF-κB Signaling Pathway
Xue ZHANG ; Yuhan ZHANG ; Yang SHI ; Dou SHI ; Min NIU ; Xue LIU ; Xing LIU ; Zhiwei YANG ; Xianxian WU
Diabetes & Metabolism Journal 2025;49(2):194-209
Background:
Both sodium-glucose cotransporters (SGLTs) and Na+/H+ exchangers (NHEs) rely on a favorable Na-electrochemical gradient. Gastrin, through the cholecystokinin B receptor (CCKBR), can induce natriuresis and diuresis by inhibiting renal NHEs activity. The present study aims to unveil the role of renal CCKBR in diabetes through SGLT2-mediated glucose reabsorption.
Methods:
Renal tubule-specific Cckbr-knockout (CckbrCKO) mice and wild-type (WT) mice were utilized to investigate the effect of renal CCKBR on SGLT2 and systemic glucose homeostasis under normal diet, high-fat diet (HFD), and HFD with a subsequent injection of a low dose of streptozotocin. The regulation of SGLT2 expression by gastrin/CCKBR and the underlying mechanism was explored using human kidney (HK)-2 cells.
Results:
CCKBR was downregulated in kidneys of diabetic mice. Compared with WT mice, CckbrCKO mice exhibited a greater susceptibility to obesity and diabetes when subjected to HFD.
7.Clinical outcomes and prognostic factors of pemphigus vulgaris and pemphigus foliaceus: A 20-year retrospective study.
Hongda LI ; Wenchao LI ; Zhenzhen WANG ; Shan CAO ; Pengcheng HUAI ; Tongsheng CHU ; Baoqi YANG ; Yonghu SUN ; Peiye XING ; Guizhi ZHOU ; Yongxia LIU ; Shengli CHEN ; Qing YANG ; Mei WU ; Zhongxiang SHI ; Hong LIU ; Furen ZHANG
Chinese Medical Journal 2025;138(10):1239-1241
8.Decoding the immune microenvironment of secondary chronic myelomonocytic leukemia due to diffuse large B-cell lymphoma with CD19 CAR-T failure by single-cell RNA-sequencing.
Xudong LI ; Hong HUANG ; Fang WANG ; Mengjia LI ; Binglei ZHANG ; Jianxiang SHI ; Yuke LIU ; Mengya GAO ; Mingxia SUN ; Haixia CAO ; Danfeng ZHANG ; Na SHEN ; Weijie CAO ; Zhilei BIAN ; Haizhou XING ; Wei LI ; Linping XU ; Shiyu ZUO ; Yongping SONG
Chinese Medical Journal 2025;138(15):1866-1881
BACKGROUND:
Several studies have demonstrated the occurrence of secondary tumors as a rare but significant complication of chimeric antigen receptor T (CAR-T) cell therapy, underscoring the need for a detailed investigation. Given the limited variety of secondary tumor types reported to date, a comprehensive characterization of the various secondary tumors arising after CAR-T therapy is essential to understand the associated risks and to define the role of the immune microenvironment in malignant transformation. This study aims to characterize the immune microenvironment of a newly identified secondary tumor post-CAR-T therapy, to clarify its pathogenesis and potential therapeutic targets.
METHODS:
In this study, the bone marrow (BM) samples were collected by aspiration from the primary and secondary tumors before and after CD19 CAR-T treatment. The CD45 + BM cells were enriched with human CD45 microbeads. The CD45 + cells were then sent for 10× genomics single-cell RNA sequencing (scRNA-seq) to identify cell populations. The Cell Ranger pipeline and CellChat were used for detailed analysis.
RESULTS:
In this study, a rare type of secondary chronic myelomonocytic leukemia (CMML) were reported in a patient with diffuse large B-cell lymphoma (DLBCL) who had previously received CD19 CAR-T therapy. The scRNA-seq analysis revealed increased inflammatory cytokines, chemokines, and an immunosuppressive state of monocytes/macrophages, which may impair cytotoxic activity in both T and natural killer (NK) cells in secondary CMML before treatment. In contrast, their cytotoxicity was restored in secondary CMML after treatment.
CONCLUSIONS
This finding delineates a previously unrecognized type of secondary tumor, CMML, after CAR-T therapy and provide a framework for defining the immune microenvironment of secondary tumor occurrence after CAR-T therapy. In addition, the results provide a rationale for targeting macrophages to improve treatment strategies for CMML treatment.
Humans
;
Lymphoma, Large B-Cell, Diffuse/therapy*
;
Tumor Microenvironment/genetics*
;
Antigens, CD19/metabolism*
;
Leukemia, Myelomonocytic, Chronic/genetics*
;
Immunotherapy, Adoptive/adverse effects*
;
Male
;
Single-Cell Analysis/methods*
;
Female
;
Sequence Analysis, RNA/methods*
;
Receptors, Chimeric Antigen
;
Middle Aged
9.Xinyang Tablets ameliorate ventricular remodeling in heart failure via FTO/m6A signaling pathway.
Dong-Hua LIU ; Zi-Ru LI ; Si-Jing LI ; Xing-Ling HE ; Xiao-Jiao ZHANG ; Shi-Hao NI ; Wen-Jie LONG ; Hui-Li LIAO ; Zhong-Qi YANG ; Xiao-Ming DONG
China Journal of Chinese Materia Medica 2025;50(4):1075-1086
The study was conducted to investigate the mechanism of Xinyang Tablets( XYP) in modulating the fat mass and obesity-associated protein(FTO)/N6-methyladenosine(m6A) signaling pathway to ameliorate ventricular remodeling in heart failure(HF). A mouse model of HF was established by transverse aortic constriction(TAC). Mice were randomized into sham, model, XYP(low, medium, and high doses), and positive control( perindopril) groups(n= 10). From day 3 post-surgery, mice were administrated with corresponding drugs by gavage for 6 consecutive weeks. Following the treatment, echocardiography was employed to evaluate the cardiac function, and RT-qPCR was employed to determine the relative m RNA levels of key markers, including atrial natriuretic peptide( ANP), B-type natriuretic peptide( BNP), β-myosin heavy chain(β-MHC), collagen type I alpha chain(Col1α), collagen type Ⅲ alpha chain(Col3α), alpha smooth muscle actin(α-SMA), and FTO. The cardiac tissue was stained with Masson's trichrome and wheat germ agglutinin(WGA) to reveal the pathological changes. Immunohistochemistry was employed to detect the expression levels of Col1α, Col3α, α-SMA, and FTO in the myocardial tissue. The m6A modification level in the myocardial tissue was measured by the m6A assay kit. An H9c2 cell model of cardiomyocyte injury was induced by angiotensin Ⅱ(AngⅡ), and small interfering RNA(siRNA) was employed to knock down FTO expression. RT-qPCR was conducted to assess the relative m RNA levels of FTO and other genes associated with cardiac remodeling. The m6A modification level was measured by the m6A assay kit, and Western blot was employed to determine the phosphorylated phosphatidylinositol 3-kinase(p-PI3K)/phosphatidylinositol 3-kinase(PI3K) and phosphorylated serine/threonine kinase(p-Akt)/serine/threonine kinase(Akt) ratios in cardiomyocytes. The results of animal experiments showed that the XYP treatment significantly improved the cardiac function, reduced fibrosis, up-regulated the m RNA and protein levels of FTO, and lowered the m6A modification level compared with the model group. The results of cell experiments showed that the XYP-containing serum markedly up-regulated the m RNA level of FTO while decreasing the m6A modification level and the p-PI3K/PI3K and p-Akt/Akt ratios in cardiomyocytes. Furthermore, FTO knockdown reversed the protective effects of XYP-containing serum on Ang Ⅱ-induced cardiomyocyte hypertrophy. In conclusion, XYP may ameliorate ventricular remodeling by regulating the FTO/m6A axis, thereby inhibiting the activation of the PI3K/Akt signaling pathway.
Animals
;
Ventricular Remodeling/drug effects*
;
Heart Failure/physiopathology*
;
Signal Transduction/drug effects*
;
Mice
;
Male
;
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
;
Humans
;
Adenosine/analogs & derivatives*
;
Myocytes, Cardiac/metabolism*
;
Disease Models, Animal
10.Heart Yin deficiency and cardiac fibrosis: from pathological mechanisms to therapeutic strategies.
Jia-Hui CHEN ; Si-Jing LI ; Xiao-Jiao ZHANG ; Zi-Ru LI ; Xing-Ling HE ; Xing-Ling CHEN ; Tao-Chun YE ; Zhi-Ying LIU ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(7):1987-1993
Cardiac fibrosis(CF) is a cardiac pathological process characterized by excessive deposition of extracellular matrix(ECM). When the heart is damaged by adverse stimuli, cardiac fibroblasts are activated and secrete a large amount of ECM, leading to changes in cardiac fibrosis, myocardial stiffness, and cardiac function declines and accelerating the development of heart failure. There is a close relationship between heart yin deficiency and cardiac fibrosis, which have similar pathogenic mechanisms. Heart Yin deficiency, characterized by insufficient Yin fluids, causes the heart to lose its nourishing function, which acts as the initiating factor for myocardial dystrophy. The deficiency of body fluids leads to stagnation of blood flow, resulting in blood stasis and water retention. Blood stasis and water retention accumulate in the heart, which aligns with the pathological manifestation of excessive deposition of ECM, as a tangible pathogenic factor. This is an inevitable stage of the disease process. The lingering of blood stasis combined with water retention eventually leads to the generation of heat and toxins, triggering inflammatory responses similar to heat toxins, which continuously stimulate the heart and cause the ultimate outcome of CF. Considering the syndrome of heart Yin deficiency, traditional Chinese medicine capable of nourishing Yin, activating blood, and promoting urination can reduce myocardial cell apoptosis, inhibit fibroblast activation, and lower the inflammation level, showing significant advantages in combating CF.
Humans
;
Fibrosis/drug therapy*
;
Animals
;
Yin Deficiency/metabolism*
;
Myocardium/metabolism*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*

Result Analysis
Print
Save
E-mail