1.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
2.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
3.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
4.Research progress on cardiovascular protective mechanism of resveratrol.
Qian WU ; Hui-Min LI ; Chun-Kun YANG ; Ying-Tian YANG ; Shi-Han WANG
China Journal of Chinese Materia Medica 2025;50(12):3244-3251
Resveratrol(Res) is a kind of polyphenolic compound, possessing multiple biological activities such as antioxidant, anti-inflammatory, cardioprotective, and anticancer effects. In recent years, the cardiovascular protective mechanism of Res has become a research hotspot. Studies have shown that Res has a protective effect on the cardiovascular system through various pathways, such as inhibiting oxidative stress, regulating ferroptosis of cells, improving ischemia-reperfusion(I/R) injury, regulating lipid metabolism, suppressing inflammatory responses, and enhancing endothelial function. It can also alleviate cardiotoxicity caused by drugs and chemicals. In terms of oxidative stress, Res reduces the level of intracellular reactive oxygen species(ROS) by enhancing the expression of proteins such as silent information regulator 1(SIRT1) and regulating mitochondrial function, thereby alleviating myocardial cell damage. Regarding ferroptosis, Res inhibits the occurrence of ferroptosis by regulating the expression of proteins related to iron metabolism. Res can also improve I/R injury through mechanisms such as activating autophagy and the mitochondrial quality control network. In regard to improving endothelial function, Res protects the function of endothelial cells by regulating multiple signaling pathways, such as downregulating the PREP1-mediated pathway. Res can also regulate lipid metabolism and inhibit the progression of atherosclerosis. In terms of inflammatory responses, Res exerts anti-inflammatory effects through mechanisms such as inhibiting the nuclear factor-kappa B(NF-κB) signaling pathway. In addition, Res has an improving effect on cardiotoxicity caused by different drugs or environmental factors. However, the clinical application of Res still faces limitations such as poor pharmacokinetic properties. In the future, in-depth exploration is needed at multiple levels from basic research to clinical application to clarify the dose-response relationship and standardize the standards of medication regimens with the expectation of providing more effective strategies for the prevention and treatment of cardiovascular diseases.
Humans
;
Resveratrol/pharmacology*
;
Animals
;
Cardiotonic Agents/pharmacology*
;
Oxidative Stress/drug effects*
;
Cardiovascular Diseases/genetics*
;
Cardiovascular System/metabolism*
;
Signal Transduction/drug effects*
5.Comparison of clinical efficacy of transmetatarsal incision and lateral soft tissue release of medial incision combined with Scarf osteotomy in the treatment of moderate to severe hallux valgus.
Feng-Ping WEN ; Xing LIU ; Chong-Yang CHEN ; Shi-Kun TIAN
China Journal of Orthopaedics and Traumatology 2025;38(6):559-565
OBJECTIVE:
To compare clinical efficacy of intermetatarsal incision and lateral soft tissue release of medial incision combined with Scarf osteotomy in treating moderate to severe hallux valgus (HV).
METHODS:
A retrospective analysis was conducted on clinical data of 42 patients with moderate to severe HV admitted from January 2022 to December 2022. According to different incisions, the patients were divided into medial incision group with 22 patients (22 feet) and intermetatarsal incision group with 20 patients (20 feet). In medial incision group, there were 3 males and 19 females, aged from 40 to 69 years old with an average of (55.0±11.4) years old;body mass index (BMI) ranged from 21 to 29 kg·m-2 with an average of (25.2±2.1) kg·m-2;the courses of disease ranged from 8 to 16 years with average of (12.0±2.2) years;11 patients with moderate deformity and 11 patients with severe deformity. In transplantar incision group, there were 3 males and 17 females, aged from 39 to 68 years old with an average of (53.0±7.5) years old;BMI ranged from 20 to 28 kg·m-2 with an average of (24.8±1.9) kg·m-2;the courses of disease ranged from 9 to 17 years with an average of (14.0±3.1) years;9 patients with moderate deformity and 11 patients with severe deformity. Hallux valgus angle (HVA) and the first-second intermetatarsal angle (IMA), American Orthopaedic Foot and Ankle Society (AOFAS) forefoot scores and complications between two groups before operation and 12 months after operation were observed and compared.
RESULTS:
All patients were successfully completed the surgery and were followed up for 12 to 15 months with an average of (13.52±1.65) months. There were no statistically significant difference in HVA and IMA between two groups before operation and 12 months after operation (P>0.05). AOFAS forefoot scores of medial incision group before operation and 12 months after operation were (45.0±6.8) and (86.0±6.7) respectively, and those of transmetatarsal incision group were (46.0±7.4) and (83.0±7.5) respectively. Postoperative AOFAS forefoot scores between two groups at 12 months were statistically significant compared with those of before operation (P<0.01). According to AOFAS forefoot scores, 8 patients got excellent result, 14 good in medial incision group;while 6 excellent and 14 good in transplantar incision group. At 12 months, postoperative AOFAS forefoot score of functional score of in medial incision group(38.0±2.5), was better than that in transplantar incision group (34.0±2.2), and the difference was statistically significant (P<0.05). One patient in medial incision group occurred HV deformity, mild numbness occurred in 3 toes in transplantar incision group, and 3 patients were dissatisfied with scar. No complications such as infection, nonunion of bones or ischemic necrosis of metatarsal heads occurred in either group.
CONCLUSION
Both intermetatarsal incision and lateral soft tissue release of medial incision combined with Scarf osteotomy can effectively treat moderate to severe HV. The functional recovery after medial incision is better than that after intermetatarsal incision.
Humans
;
Male
;
Female
;
Hallux Valgus/physiopathology*
;
Middle Aged
;
Osteotomy/methods*
;
Adult
;
Aged
;
Retrospective Studies
;
Treatment Outcome
;
Metatarsal Bones/surgery*
6.Single-cell profiling reveals Müller glia coordinate retinal intercellular communication during light/dark adaptation via thyroid hormone signaling.
Min WEI ; Yanping SUN ; Shouzhen LI ; Yunuo CHEN ; Longfei LI ; Minghao FANG ; Ronghua SHI ; Dali TONG ; Jutao CHEN ; Yuqian MA ; Kun QU ; Mei ZHANG ; Tian XUE
Protein & Cell 2023;14(8):603-617
Light adaptation enables the vertebrate visual system to operate over a wide range of ambient illumination. Regulation of phototransduction in photoreceptors is considered a major mechanism underlying light adaptation. However, various types of neurons and glial cells exist in the retina, and whether and how all retinal cells interact to adapt to light/dark conditions at the cellular and molecular levels requires systematic investigation. Therefore, we utilized single-cell RNA sequencing to dissect retinal cell-type-specific transcriptomes during light/dark adaptation in mice. The results demonstrated that, in addition to photoreceptors, other retinal cell types also showed dynamic molecular changes and specifically enriched signaling pathways under light/dark adaptation. Importantly, Müller glial cells (MGs) were identified as hub cells for intercellular interactions, displaying complex cell‒cell communication with other retinal cells. Furthermore, light increased the transcription of the deiodinase Dio2 in MGs, which converted thyroxine (T4) to active triiodothyronine (T3). Subsequently, light increased T3 levels and regulated mitochondrial respiration in retinal cells in response to light conditions. As cones specifically express the thyroid hormone receptor Thrb, they responded to the increase in T3 by adjusting light responsiveness. Loss of the expression of Dio2 specifically in MGs decreased the light responsive ability of cones. These results suggest that retinal cells display global transcriptional changes under light/dark adaptation and that MGs coordinate intercellular communication during light/dark adaptation via thyroid hormone signaling.
Animals
;
Mice
;
Dark Adaptation
;
Light
;
Retina
;
Retinal Cone Photoreceptor Cells/metabolism*
;
Adaptation, Ocular
;
Neuroglia/physiology*
;
Cell Communication
;
Thyroid Hormones
7.Oxidative phosphorylation safeguards pluripotency via UDP-N-acetylglucosamine.
Jiani CAO ; Meng LI ; Kun LIU ; Xingxing SHI ; Ning SUI ; Yuchen YAO ; Xiaojing WANG ; Shiyu LI ; Yuchang TIAN ; Shaojing TAN ; Qian ZHAO ; Liang WANG ; Xiahua CHAI ; Lin ZHANG ; Chong LIU ; Xing LI ; Zhijie CHANG ; Dong LI ; Tongbiao ZHAO
Protein & Cell 2023;14(5):376-381
8. Effects of berberine on colon dermal cell apoptosis in mice with ulcerative colitis based on JAK/STAT signaling pathway
Chun-Lin LI ; Pi-Xian SHUI ; Shi-Chao LI ; Ying-Tian JIA ; Jian LI ; Kun-Peng ZHAO
Chinese Pharmacological Bulletin 2023;39(5):938-945
Aim To analyze the effects of berberine on the apoptosis of colon epithelial cells and polymorpho-nuclear neutrophils ( PMNs) in mice with ulcerative colitis ( UC ) by regulating JAK/STAT signaling pathway. Methods The UC mouse models were established by dextran sulfate sodium ( DSS) method and were randomly divided into control group, UC group, low-dose, middle-dose and high-dose berberine groups and positive drug group ( mesalazine enteric-coated tablet group) . In addition, the mice were randomly di¬vided into UC group, high-dose berberine group, AG490 group, and high-dose berberine + AG490 group. Levels of serum tumor necrosis factor a (TNF-α) and interleukin 6 (IL-6) and colon epithelial cell apoptosis and PMN apoptosis were compared among the groups. Western blot was used to detect the expres¬sions of colon tissue apoptosis-related and JAK/STAT signaling pathway-related proteins. Results The lev¬els of serum TNF-α and IL-6, apoptosis rate of colon epithelial cell and protein expressions of Fas, FasL, Bax, caspase-3, p-JAK2/JAK2 and p-STAT3/STAT3 in each dose berberine group and positive drug group were significantly lower than those in UC group (P < 0.05), and the above indicators in berberine groups were reduced gradually (P <0.05) . The PMN apoptosis rate and Bcl-2 protein expression were significantly higher in each dose berberine group and positive drug group than those in UC group (P <0. 05) , and the two indicators increased gradually in berberine groups ( P < 0.05). AG490 could reverse the above effects of berberine ( P < 0. 05 ). Conclusions Berberine can inhibit the apoptosis of colon epithelial cell and promote the apoptosis of PMN in UC mice by regulating the JAK/STAT signaling pathway, and then play a role in the treatment of UC.
9.The comparison of survival between active surveillance or watchful waiting and focal therapy for low-risk prostate cancer: a real-world study from the SEER database.
Qi-Ming YUAN ; Tian-Hai LIN ; Kun JIN ; Shi QIU ; Xiang-Hong ZHOU ; Di JIN ; Jia-Kun LI ; Lu YANG ; Qiang WEI
Asian Journal of Andrology 2022;24(3):305-310
To reduce treatment-related side effects in low-risk prostate cancer (PCa), both focal therapy and deferred treatments, including active surveillance (AS) and watchful waiting (WW), are worth considering over radical prostatectomy (RP). Therefore, this study aimed to compare long-term survival outcomes between focal therapy and AS/WW. Data were obtained and analyzed from the Surveillance, Epidemiology, and End Results (SEER) database. Patients with low-risk PCa who received focal therapy or AS/WW from 2010 to 2016 were included. Focal therapy included cryotherapy and laser ablation. Multivariate Cox proportional hazards models were used to compare overall mortality (OM) and cancer-specific mortality (CSM) between AS/WW and focal therapy, and propensity score matching (PSM) was performed to reduce the influence of bias and unmeasured confounders. A total of 19 292 patients with low-risk PCa were included in this study. In multivariate Cox proportional hazards model analysis, the risk of OM was higher in patients receiving focal therapy than those receiving AS/WW (hazard ratio [HR] = 1.35, 95% confidence interval [CI]: 1.02-1.79, P = 0.037), whereas no significant difference was found in CSM (HR = 0.98, 95% CI: 0.23-4.11, P = 0.977). After PSM, the OM and CSM of focal therapy and AS/WW showed no significant differences (HR = 1.26, 95% CI: 0.92-1.74, P = 0.149; and HR = 1.26, 95% CI: 0.24-6.51, P = 0.782, respectively). For patients with low-risk PCa, focal therapy was no match for AS/WW in decreasing OM, suggesting that AS/WW could bring more overall survival benefits.
Humans
;
Male
;
Propensity Score
;
Proportional Hazards Models
;
Prostatectomy/methods*
;
Prostatic Neoplasms/surgery*
;
Watchful Waiting
10.Metagenomic data-analysis reveals enrichment of lipopolysaccharide synthesis in the gut microbiota of atrial fibrillation patients.
Kun ZUO ; Jing ZHANG ; Chen FANG ; Yu Xing WANG ; Li Feng LIU ; Ye LIU ; Zheng LIU ; Yan Jiang WANG ; Liang SHI ; Ying TIAN ; Xian Dong YIN ; Xing Peng LIU ; Xiao Qing LIU ; Jiu Chang ZHONG ; Kui Bao LI ; Jing LI ; Xin Chun YANG
Chinese Journal of Cardiology 2022;50(3):249-256
Objective: To investigate the functional changes of key gut microbiota (GM) that produce lipopolysaccharide (LPS) in atrial fibrillation (AF) patients and to explore their potential role in the pathogenesis of AF. Methods: This was a prospective cross-sectional study. Patients with AF admitted to Beijing Chaoyang Hospital of Capital Medical University were enrolled from March 2016 to December 2018. Subjects with matched genetic backgrounds undergoing physical examination during the same period were selected as controls. Clinical baseline data and fecal samples were collected. Bacterial DNA was extracted and metagenomic sequencing was performed by using Illumina Novaseq. Based on metagenomic data, the relative abundances of KEGG Orthology (KO), enzymatic genes and species that harbored enzymatic genes were acquired. The key features were selected via the least absolute shrinkage and selection operator (LASSO) analysis. The role of GM-derived LPS biosynthetic feature in the development of AF was assessed by receiver operating characteristic (ROC) curve, partial least squares structural equation modeling (PLS-SEM) and logistic regression analysis. Results: Fifty nonvalvular AF patients (mean age: 66.0 (57.0, 71.3), 32 males(64%)) were enrolled as AF group. Fifty individuals (mean age 55.0 (50.5, 57.5), 41 males(82%)) were recruited as controls. Compared with the controls, AF patients showed a marked difference in the GM genes underlying LPS-biosynthesis, including 20 potential LPS-synthesis KO, 7 LPS-biosynthesis enzymatic genes and 89 species that were assigned as taxa harbored nine LPS-enzymatic genes. LASSO regression analysis showed that 5 KO, 3 enzymatic genes and 9 species could be selected to construct the KO, enzyme and species scoring system. Genes enriched in AF group included 2 KO (K02851 and K00972), 3 enzymatic genes (LpxH, LpxC and LpxK) and 7 species (Intestinibacter bartlettii、Ruminococcus sp. JC304、Coprococcus catus、uncultured Eubacterium sp.、Eubacterium sp. CAG:251、Anaerostipes hadrus、Dorea longicatena). ROC curve analysis revealed the predictive capacity of differential GM-derived LPS signatures to distinguish AF patients in terms of above KO, enzymatic and species scores: area under curve (AUC)=0.957, 95%CI: 0.918-0.995, AUC=0.940, 95%CI 0.889-0.991, AUC=0.972, 95%CI 0.948-0.997. PLS-SEM showed that changes in lipopolysaccharide-producing bacteria could be involved in the pathogenesis of AF. The key KO mediated 35.17% of the total effect of key bacteria on AF. After incorporating the clinical factors of AF, the KO score was positively associated with the significantly increased risk of AF (OR<0.001, 95%CI:<0.001-0.021, P<0.001). Conclusion: Microbes involved in LPS synthesis are enriched in the gut of AF patients, accompanied with up-regulated LPS synthesis function by encoding the LPS-enzymatic biosynthesis gene.
Aged
;
Atrial Fibrillation/complications*
;
Cross-Sectional Studies
;
Gastrointestinal Microbiome
;
Humans
;
Lipopolysaccharides
;
Male
;
Middle Aged
;
Prospective Studies

Result Analysis
Print
Save
E-mail