1.Association between sleep fragmentation and body composition/blood pressure among 12-15 year old female students in Nanyang City
WANG Qing, SHI Bingqin, XU Guochang, LIU Rongzhi, HUANG Hua
Chinese Journal of School Health 2025;46(7):1027-1031
Objective:
To investigate the correlation between sleep fragmentation and body composition/blood pressure in female students of middle school, so as to provide theoretical guidance for preventing health risks associated with sleep fragmentation.
Methods:
From September 2022 to December 2023, 505 female students aged 12-15 years in Nanyang City were selected through stratified cluster random sampling and conducted Pittsburgh Sleep Quality Index(PSQI) survey. Participants were divided into Q 1- Q 4 groups based on sleep fragmentation index (SFI) quartiles. Body composition and blood pressure measurements were measured by adopting body composition analyzer and traditional mercury sphygmomanometer, and data were analyzed using χ 2 tests and linear regression.
Results:
Significant intergroup differences for Q 1- Q 4 were observed with increasing SFI levels for body mass index(BMI), fat percentage, muscle mass, bone mass, trunk fat percentage, systolic blood pressure, diastolic blood pressure, and PSQI total scores ( F =15.25,7.33,8.38,5.97,11.24,16.85,6.87,15.73, all P <0.05). SFI showed positive correlations with BMI, fat percentage, trunk fat percentage, and blood pressure( β =0.37,0.45,0.34,0.42,0.38), but negative correlations with muscle mass and bone mass( β =-0.35,-0.48) (all P <0.05). The χ 2 trend test revealed a significant increase in hypertension detection rates with elevated SFI ( χ 2=42.75, P <0.05). The χ 2 testing demonstrated statistically significant differences in hypertension incidence among different quartiles groups ( χ 2=14.16, P <0.05). After adjusting the significance level, hypertension incidence differences remained significant between Q 1and Q 4 ( χ 2=10.77), Q 2 and Q 4 groups ( χ 2=6.28) (both P <0.008 3).
Conclusions
Sleep fragmentation correlates significantly with body composition and blood pressure indicators in female students of middle school. Implementing sleep fragmentation interventions is essential for safeguarding female students health in middle school.
2.Therapeutic Strategy and Mechanism of Xijiao Dihuangtang in Recurrence of Psoriasis Vulgaris After Remission Based on Theory of "Latent Fire Causing Blood Stasis"
Cuiyue ZHANG ; Xiao XIAO ; Yanping SHI ; Yanli LIU ; Hua BIAN ; Jingjing DENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):244-252
Psoriasis vulgaris is notoriously difficult to treat and prone to recurrence. Traditional Chinese medicine (TCM), however, has shown considerable efficacy in mitigating or suppressing such recurrence. The underlying reason lies in the TCM concept of "latent pathogens", which are prone to be reactivated by external pathogenic factors, thereby triggering relapse. At the early stage of recurrence, manifestations of "latent fire" often appear externally. If treatment is not thorough, the condition may shift into a state of "stalemate between healthy Qi and pathogenic factors", in which the disease appears on the skin but is rooted in deeper pathological layers, remaining unresolved and accumulating internally. Over time, blood stasis arises from fire, and the fire further congeals due to stasis, leading ultimately to recurrent flare-ups. This aligns with the modern immunological concept of "immunological memory" mediated by tissue-resident memory T cells (TRM) in the skin, which corroborates the TCM view of "latent fire inducing blood stasis". The interaction between TRM and keratinocytes (KC) parallels the entanglement of latent fire and latent stasis, both of which are deeply entrenched and difficult to resolve. The core pathogenesis of recurrent psoriasis vulgaris lies in "latent fire causing blood stasis". The hallmark is the deep concealment and persistence of latent fire and stasis, which linger and await an opportunity to reemerge. Based on this understanding, Xijiao Dihuangtang is employed to cool the blood, resolve stasis, and eliminate latent pathogens, and treatment is tailored according to the disease stage through three-phase syndrome differentiation. In the progressive stage, both exterior and interior are treated, with emphasis on clearing latent fire. In the stationary stage, the focus shifts to dispelling latent stasis and simultaneously regulating the Zang-fu organs. In the regressive stage, efforts are made to prevent the retention of latent pathogens and to strengthen healthy Qi. Accordingly, drugs effective in dispersing wind and clearing heat, pungent-moistening and dredging the collaterals, and tonifying deficiency and moistening dryness are often employed to achieve optimal outcomes. The precise mechanisms by which Xijiao Dihuangtang treats recurrent psoriasis vulgaris remain to be fully elucidated. Current research suggests it may intervene in the recurrence process through inhibiting KC proliferation via the PI3K/Akt/mTOR signaling pathway and glycolysis, regulating the Th1/Th2 and Th17/Treg cell balances to restore immune homeostasis, suppressing inflammatory cytokine production to alleviate the inflammatory response, modulating angiogenesis-related factors, such as vascular endothelial growth factor A (VEGF-A) and matrix metalloproteinase-9 (MMP-9), to control disease progression, and restructuring the gut microbiota to modulate systemic immunity and thereby influence the course of disease recurrence.
3.Analysis of T7 RNA Polymerase: From Structure-function Relationship to dsRNA Challenge and Biotechnological Applications
Wei-Chen NING ; Yu HUA ; Hui-Ling YOU ; Qiu-Shi LI ; Yao WU ; Yun-Long LIU ; Zhen-Xin HU
Progress in Biochemistry and Biophysics 2025;52(9):2280-2294
T7 RNA polymerase (T7 RNAP) is one of the simplest known RNA polymerases. Its unique structural features make it a critical model for studying the mechanisms of RNA synthesis. This review systematically examines the static crystal structure of T7 RNAP, beginning with an in-depth examination of its characteristic “thumb”, “palm”, and “finger” domains, which form the classic “right-hand-like” architecture. By detailing these structural elements, this review establishes a foundation for understanding the overall organization of T7 RNAP. This review systematically maps the functional roles of secondary structural elements and their subdomains in transcriptional catalysis, progressively elucidating the fundamental relationships between structure and function. Further, the intrinsic flexibility of T7 RNAP and its applications in research are also discussed. Additionally, the review presents the structural diagrams of the enzyme at different stages of the transcription process, and through these diagrams, it provides a detailed description of the complete transcription process of T7 RNAP. By integrating structural dynamics and kinetics analyses, the review constructs a comprehensive framework that bridges static structure to dynamic processes. Despite its advantages, T7 RNAP has a notable limitation: it generates double-stranded RNA (dsRNA) as a byproduct. The presence of dsRNA not only compromises the purity of mRNA products but also elicits nonspecific immune responses, which pose significant challenges for biotechnological and therapeutic applications. The review provides a detailed exploration of the mechanisms underlying dsRNA formation during T7 RNAP catalysis, reviews current strategies to mitigate this issue, and highlights recent progress in the field. A key focus is the semi-rational design of T7 RNAP mutants engineered to minimize dsRNA generation and enhance catalytic performance. Beyond its role in transcription, T7 RNAP exhibits rapid development and extensive application in fields, including gene editing, biosensing, and mRNA vaccines. This review systematically examines the structure-function relationships of T7 RNAP, elucidates the mechanisms of dsRNA formation, and discusses engineering strategies to optimize its performance. It further explores the engineering optimization and functional expansion of T7 RNAP. Furthermore, this review also addresses the pressing issues that currently need resolution, discusses the major challenges in the practical application of T7 RNAP, and provides an outlook on potential future research directions. In summary, this review provides a comprehensive analysis of T7 RNAP, ranging from its structural architecture to cutting-edge applications. We systematically examine: (1) the characteristic right-hand domains (thumb, palm, fingers) that define its minimalistic structure; (2) the structure-function relationships underlying transcriptional catalysis; and (3) the dynamic transitions during the complete transcription cycle. While highlighting T7 RNAP’s versatility in gene editing, biosensing, and mRNA vaccine production, we critically address its major limitation—dsRNA byproduct formation—and evaluate engineering solutions including semi-rationally designed mutants. By synthesizing current knowledge and identifying key challenges, this work aims to provide novel insights for the development and application of T7 RNAP and to foster further thought and progress in related fields.
4.Safety of teriflunomide in Chinese adult patients with relapsing multiple sclerosis: A phase IV, 24-week multicenter study.
Chao QUAN ; Hongyu ZHOU ; Huan YANG ; Zheng JIAO ; Meini ZHANG ; Baorong ZHANG ; Guojun TAN ; Bitao BU ; Tao JIN ; Chunyang LI ; Qun XUE ; Huiqing DONG ; Fudong SHI ; Xinyue QIN ; Xinghu ZHANG ; Feng GAO ; Hua ZHANG ; Jiawei WANG ; Xueqiang HU ; Yueting CHEN ; Jue LIU ; Wei QIU
Chinese Medical Journal 2025;138(4):452-458
BACKGROUND:
Disease-modifying therapies have been approved for the treatment of relapsing multiple sclerosis (RMS). The present study aims to examine the safety of teriflunomide in Chinese patients with RMS.
METHODS:
This non-randomized, multi-center, 24-week, prospective study enrolled RMS patients with variant (c.421C>A) or wild type ABCG2 who received once-daily oral teriflunomide 14 mg. The primary endpoint was the relationship between ABCG2 polymorphisms and teriflunomide exposure over 24 weeks. Safety was assessed over the 24-week treatment with teriflunomide.
RESULTS:
Eighty-two patients were assigned to variant ( n = 42) and wild type groups ( n = 40), respectively. Geometric mean and geometric standard deviation (SD) of pre-dose concentration (variant, 54.9 [38.0] μg/mL; wild type, 49.1 [32.0] μg/mL) and area under plasma concentration-time curve over a dosing interval (AUC tau ) (variant, 1731.3 [769.0] μg∙h/mL; wild type, 1564.5 [1053.0] μg∙h/mL) values at steady state were approximately similar between the two groups. Safety profile was similar and well tolerated across variant and wild type groups in terms of rates of treatment emergent adverse events (TEAE), treatment-related TEAE, grade ≥3 TEAE, and serious adverse events (AEs). No new specific safety concerns or deaths were reported in the study.
CONCLUSION:
ABCG2 polymorphisms did not affect the steady-state exposure of teriflunomide, suggesting a similar efficacy and safety profile between variant and wild type RMS patients.
REGISTRATION
NCT04410965, https://clinicaltrials.gov .
Humans
;
Crotonates/adverse effects*
;
Toluidines/adverse effects*
;
Nitriles
;
Hydroxybutyrates
;
Female
;
Male
;
Adult
;
ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics*
;
Middle Aged
;
Multiple Sclerosis, Relapsing-Remitting/genetics*
;
Prospective Studies
;
Young Adult
;
Neoplasm Proteins/genetics*
;
East Asian People
5.SMUG1 promoted the progression of pancreatic cancer via AKT signaling pathway through binding with FOXQ1.
Zijian WU ; Wei WANG ; Jie HUA ; Jingyao ZHANG ; Jiang LIU ; Si SHI ; Bo ZHANG ; Xiaohui WANG ; Xianjun YU ; Jin XU
Chinese Medical Journal 2025;138(20):2640-2656
BACKGROUND:
Pancreatic cancer is a lethal malignancy prone to gemcitabine resistance. The single-strand selective monofunctional uracil DNA glycosylase (SMUG1), which is responsible for initiating base excision repair, has been reported to predict the outcomes of different cancer types. However, the function of SMUG1 in pancreatic cancer is still unclear.
METHODS:
Gene and protein expression of SMUG1 as well as survival outcomes were assessed by bioinformatic analysis and verified in a cohort from Fudan University Shanghai Cancer Center. Subsequently, the effect of SMUG1 on proliferation, cell cycle, and migration abilities of SMUG1 cells were detected in vitro . DNA damage repair, apoptosis, and gemcitabine resistance were also tested. RNA sequencing was performed to determine the differentially expressed genes and signaling pathways, followed by quantitative real-time polymerase chain reaction and Western blotting verification. The cancer-promoting effect of forkhead box Q1 (FOXQ1) and SMUG1 on the ubiquitylation of myelocytomatosis oncogene (c-Myc) was also evaluated. Finally, a xenograft model was established to verify the results.
RESULTS:
SMUG1 was highly expressed in pancreatic tumor tissues and cells, which also predicted a poor prognosis. Downregulation of SMUG1 inhibited the proliferation, G1 to S transition, migration, and DNA damage repair ability against gemcitabine in pancreatic cancer cells. SMUG1 exerted its function by binding with FOXQ1 to activate the Protein Kinase B (AKT)/p21 and p27 pathway. Moreover, SMUG1 also stabilized the c-Myc protein via AKT signaling in pancreatic cancer cells.
CONCLUSIONS
SMUG1 promotes proliferation, migration, gemcitabine resistance, and c-Myc protein stability in pancreatic cancer via protein kinase B signaling through binding with FOXQ1. Furthermore, SMUG1 may be a new potential prognostic and gemcitabine resistance predictor in pancreatic ductal adenocarcinoma.
Humans
;
Pancreatic Neoplasms/pathology*
;
Forkhead Transcription Factors/genetics*
;
Signal Transduction/genetics*
;
Animals
;
Cell Line, Tumor
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Cell Proliferation/physiology*
;
Mice
;
Uracil-DNA Glycosidase/genetics*
;
Female
;
Male
;
Gemcitabine
;
Mice, Nude
;
Apoptosis/physiology*
;
Deoxycytidine/analogs & derivatives*
;
Cell Movement/genetics*
6.Xinyang Tablets ameliorate ventricular remodeling in heart failure via FTO/m6A signaling pathway.
Dong-Hua LIU ; Zi-Ru LI ; Si-Jing LI ; Xing-Ling HE ; Xiao-Jiao ZHANG ; Shi-Hao NI ; Wen-Jie LONG ; Hui-Li LIAO ; Zhong-Qi YANG ; Xiao-Ming DONG
China Journal of Chinese Materia Medica 2025;50(4):1075-1086
The study was conducted to investigate the mechanism of Xinyang Tablets( XYP) in modulating the fat mass and obesity-associated protein(FTO)/N6-methyladenosine(m6A) signaling pathway to ameliorate ventricular remodeling in heart failure(HF). A mouse model of HF was established by transverse aortic constriction(TAC). Mice were randomized into sham, model, XYP(low, medium, and high doses), and positive control( perindopril) groups(n= 10). From day 3 post-surgery, mice were administrated with corresponding drugs by gavage for 6 consecutive weeks. Following the treatment, echocardiography was employed to evaluate the cardiac function, and RT-qPCR was employed to determine the relative m RNA levels of key markers, including atrial natriuretic peptide( ANP), B-type natriuretic peptide( BNP), β-myosin heavy chain(β-MHC), collagen type I alpha chain(Col1α), collagen type Ⅲ alpha chain(Col3α), alpha smooth muscle actin(α-SMA), and FTO. The cardiac tissue was stained with Masson's trichrome and wheat germ agglutinin(WGA) to reveal the pathological changes. Immunohistochemistry was employed to detect the expression levels of Col1α, Col3α, α-SMA, and FTO in the myocardial tissue. The m6A modification level in the myocardial tissue was measured by the m6A assay kit. An H9c2 cell model of cardiomyocyte injury was induced by angiotensin Ⅱ(AngⅡ), and small interfering RNA(siRNA) was employed to knock down FTO expression. RT-qPCR was conducted to assess the relative m RNA levels of FTO and other genes associated with cardiac remodeling. The m6A modification level was measured by the m6A assay kit, and Western blot was employed to determine the phosphorylated phosphatidylinositol 3-kinase(p-PI3K)/phosphatidylinositol 3-kinase(PI3K) and phosphorylated serine/threonine kinase(p-Akt)/serine/threonine kinase(Akt) ratios in cardiomyocytes. The results of animal experiments showed that the XYP treatment significantly improved the cardiac function, reduced fibrosis, up-regulated the m RNA and protein levels of FTO, and lowered the m6A modification level compared with the model group. The results of cell experiments showed that the XYP-containing serum markedly up-regulated the m RNA level of FTO while decreasing the m6A modification level and the p-PI3K/PI3K and p-Akt/Akt ratios in cardiomyocytes. Furthermore, FTO knockdown reversed the protective effects of XYP-containing serum on Ang Ⅱ-induced cardiomyocyte hypertrophy. In conclusion, XYP may ameliorate ventricular remodeling by regulating the FTO/m6A axis, thereby inhibiting the activation of the PI3K/Akt signaling pathway.
Animals
;
Ventricular Remodeling/drug effects*
;
Heart Failure/physiopathology*
;
Signal Transduction/drug effects*
;
Mice
;
Male
;
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
;
Humans
;
Adenosine/analogs & derivatives*
;
Myocytes, Cardiac/metabolism*
;
Disease Models, Animal
7.Efficacy and mechanism of Guizhi Tongluo Tablets in alleviating atherosclerosis by inhibiting CD72hi macrophages.
Xing-Ling HE ; Si-Jing LI ; Zi-Ru LI ; Dong-Hua LIU ; Xiao-Jiao ZHANG ; Huan HE ; Xiao-Ming DONG ; Wen-Jie LONG ; Wei-Wei ZHANG ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(5):1298-1309
This study investigates the effect and underlying mechanism of Guizhi Tongluo Tablets(GZTL) in treating atherosclerosis(AS) in a mouse model. Apolipoprotein E-knockout(ApoE~(-/-)) mice were randomly assigned to the following groups: model, high-, medium-, and low-dose GZTL, and atorvastatin(ATV), and age-matched C57BL/6J mice were selected as the control group. ApoE~(-/-) mice in other groups except the control group were fed with a high-fat diet for the modeling of AS and administrated with corresponding drugs via gavage for 8 weeks. General conditions, signs of blood stasis, and body mass of mice were monitored. Aortic plaques and their stability were assessed by hematoxylin-eosin, Masson, and oil red O staining. Serum levels of total cholesterol(TC), triglycerides(TG), and low-density lipoprotein cholesterol(LDL-C) were measured by biochemical assays, and those of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) were determined via enzyme-linked immunosorbent assay. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL). Single-cell RNA sequencing(scRNA-seq) was employed to analyze the differential expression of CD72hi macrophages(CD72hi-Mφ) in the aortas of AS patients and mice. The immunofluorescence assay was employed to visualize CD72hi-Mφ expression in mouse aortic plaques, and real-time fluorescence quantitative PCR was utilized to determine the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. The results demonstrated that compared with the control group, the model group exhibited significant increases in body mass, aortic plaque area proportion, necrotic core area proportion, and lipid deposition, a notable decrease in collagen fiber content, and an increase in apoptosis. Additionally, the model group showcased elevated serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6, alongside marked upregulations in the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. In comparison with the model group, the GZTL groups and the ATV group showed a reduction in body mass, and the medium-and high-dose GZTL groups and the ATV group demonstrated reductions in aortic plaque area proportion, necrotic core area proportion, and lipid deposition, an increase in collagen fiber content, and a decrease in apoptosis. Furthermore, the treatment goups showcased lowered serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6. The data of scRNA-seq revealed significantly elevated CD72hi-Mφ signaling in carotid plaques of AS patients compared with that in the normal arterial tissue. Animal experiments confirmed that CD72hi-Mφ expression, along with several pro-inflammatory cytokines, was significantly upregulated in the aortas of AS mice, which were downregulated by GZTL treatment. In conclusion, GZTL may alleviate AS by inhibiting CD72hi-Mφ activity.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Atherosclerosis/immunology*
;
Mice
;
Mice, Inbred C57BL
;
Macrophages/immunology*
;
Male
;
Humans
;
Apolipoproteins E/genetics*
;
Tablets
;
Tumor Necrosis Factor-alpha/genetics*
;
Apoptosis/drug effects*
;
Interleukin-1beta/genetics*
;
Interleukin-6/genetics*
;
Disease Models, Animal
;
Mice, Knockout
8.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires
9.Mechanism related to bile acids metabolism of liver injury induced by long-term administration of emodin.
Jing-Zhuo TIAN ; Lian-Mei WANG ; Yan YI ; Zhong XIAN ; Nuo DENG ; Yong ZHAO ; Chun-Ying LI ; Yu-Shi ZHANG ; Su-Yan LIU ; Jia-Yin HAN ; Chen PAN ; Chen-Yue LIU ; Jing MENG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(11):3079-3087
Emodin is a hydroxyanthraquinone compound that is widely distributed and has multiple pharmacological activities, including anti-diarrheal, anti-inflammatory, and liver-protective effects. Research indicates that emodin may be one of the main components responsible for inducing hepatotoxicity. However, studies on the mechanisms of liver injury are relatively limited, particularly those related to bile acids(BAs) metabolism. This study aims to systematically investigate the effects of different dosages of emodin on BAs metabolism, providing a basis for the safe clinical use of traditional Chinese medicine(TCM)containing emodin. First, this study evaluated the safety of repeated administration of different dosages of emodin over a 5-week period, with a particular focus on its impact on the liver. Next, the composition and content of BAs in serum and liver were analyzed. Subsequently, qRT-PCR was used to detect the mRNA expression of nuclear receptors and transporters related to BAs metabolism. The results showed that 1 g·kg~(-1) emodin induced hepatic damage, with bile duct hyperplasia as the primary pathological manifestation. It significantly increased the levels of various BAs in the serum and primary BAs(including taurine-conjugated and free BAs) in the liver. Additionally, it downregulated the mRNA expression of farnesoid X receptor(FXR), retinoid X receptor(RXR), and sodium taurocholate cotransporting polypeptide(NTCP), and upregulated the mRNA expression of cholesterol 7α-hydroxylase(CYP7A1) in the liver. Although 0.01 g·kg~(-1) and 0.03 g·kg~(-1) emodin did not induce obvious liver injury, they significantly increased the level of taurine-conjugated BAs in the liver, suggesting a potential interference with BAs homeostasis. In conclusion, 1 g·kg~(-1) emodin may promote the production of primary BAs in the liver by affecting the FXR-RXR-CYP7A1 pathway, inhibit NTCP expression, and reduce BA reabsorption in the liver, resulting in BA accumulation in the peripheral blood. This disruption of BA homeostasis leads to liver injury. Even doses of emodin close to the clinical dose can also have a certain effect on the homeostasis of BAs. Therefore, when using traditional Chinese medicine or formulas containing emodin in clinical practice, it is necessary to regularly monitor liver function indicators and closely monitor the risk of drug-induced liver injury.
Emodin/administration & dosage*
;
Bile Acids and Salts/metabolism*
;
Animals
;
Male
;
Liver/injuries*
;
Chemical and Drug Induced Liver Injury/genetics*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Rats, Sprague-Dawley
;
Mice
;
Rats
10.Effect and mechanism of Bufei Decoction on improving Klebsiella pneumoniae pneumonia in rats by regulating IL-17 signaling pathway.
Li-Na HUANG ; Zheng-Ying QIU ; Xiang-Yi PAN ; Chen LIU ; Si-Fan LI ; Shao-Guang GE ; Xiong-Wei SHI ; Hao CAO ; Rui-Hua XIN ; Fang-di HU
China Journal of Chinese Materia Medica 2025;50(11):3097-3107
Based on the interleukin-17(IL-17) signaling pathway, this study explores the effect and mechanism of Bufei Decoction on Klebsiella pneumoniae pneumonia in rats. SD rats were randomly divided into the control group, model group, Bufei Decoction low-dose group(6.68 g·kg~(-1)·d~(-1)), Bufei Decoction high-dose group(13.36 g·kg~(-1)·d~(-1)), and dexamethasone group(1.04 mg·kg~(-1)·d~(-1)), with 10 rats in each group. A pneumonia model was established by tracheal drip injection of K. pneumoniae. After successful model establishment, the improvement in lung tissue damage was observed following drug administration. Core targets and signaling pathways were screened using transcriptomics techniques. Real-time fluorescence quantitative polymerase chain reaction was used to detect the mRNA expression of core targets interleukin-6(IL-6), interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and chemokine CXC ligand 6(CXCL6). Western blot was used to assess key proteins in the IL-17 signaling pathway, including interleukin-17A(IL-17A), nuclear transcription factor-κB activator 1(Act1), tumor necrosis factor receptor-associated factor 6(TRAF6), and downstream phosphorylated p38 mitogen-activated protein kinase(p-p38 MAPK), and phosphorylated nuclear factor-κB p65(p-NF-κB p65). Apoptosis of lung tissue cells was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling(TUNEL). The results showed that, compared with the control group, the model group exhibited significant pathological damage in lung tissue. The mRNA expression of IL-6, IL-1β, TNF-α, and CXCL6, as well as the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly increased, and the number of apoptotic cells was notably higher, indicating successful model establishment. Compared with the model group, both low-and high-dose groups of Bufei Decoction showed reduced pathological damage in lung tissue. The mRNA expression levels of IL-6, IL-1β, TNF-α, and CXCL6, and the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly decreased, with a significant reduction in apoptotic cells in the high-dose group. In conclusion, Bufei Decoction can effectively improve lung tissue damage and reduce inflammation in rats with K. pneumoniae. The mechanism may involve the regulation of the IL-17 signaling pathway and the reduction of apoptosis.
Animals
;
Interleukin-17/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Rats
;
Male
;
Klebsiella pneumoniae/physiology*
;
Klebsiella Infections/immunology*
;
Humans
;
Lung/drug effects*


Result Analysis
Print
Save
E-mail