1.Huanglian Jiedutang Improves Myelin Damage and Agitated Behavior in Vascular Dementia by Regulating Microglial Polarization via CD22/SHP-1/p-Akt Signaling Pathway
Chen CHEN ; Xiaoxia FENG ; Shiting LIANG ; Xinxian SHI ; Guang YANG ; Jing QIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):25-33
ObjectiveTo investigate the mechanisms by which Huanglian Jiedutang (HLJDT) modulates microglial (MG) phenotypes through the sialic acid-binding Ig-like lectin 2 (SIGLEC2/CD22)/Src-homology-2-domain-containing protein tyrosine phosphatase-1 (SHP-1)/phosphorylated protein kinase B (p-Akt) signaling pathway, thereby promoting myelin repair and alleviating agitation-like behaviors in vascular dementia (VAD). MethodsSixty C57BL/6J mice were randomly assigned to a sham (normal) group, model group, HLJDT low-, medium-, and high-dose groups (2.5, 5, and 10 g·kg-1·d-1), and a risperidone group (2 mg·kg-1·d-1), with 10 mice per group. VAD was induced by bilateral common carotid artery stenosis (BCAS). From day 42, mice received drug interventions for 2 weeks. Agitation-like behaviors were assessed using the resident-intruder test. After behavioral testing, ventrolateral part of the ventromedial hypothalamus (VMHvl) tissues were collected. Western blot was used to measure protein levels of myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), proteolipid protein (PLP), inducible nitric oxide synthase (iNOS), arginase-1 (Arg1), CD86, CD206, and CD22, SHP-1, and p-Akt. Immunofluorescence was used to evaluate myelin-associated glycoprotein (MAG) intensity and the proportion of iNOS+/ionized calcium-binding adapter molecule 1 (Iba1)+ cells. ELISA was used to detect tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β. ResultsCompared with the normal group, the model group exhibited markedly increased biting and aggressive behaviors and shortened attack latency (P<0.01). MOG, MBP, and PLP protein levels and MAG fluorescence intensity were significantly reduced (P<0.05, P<0.01). INOS and CD86 expression and TNF-α, IL-6, and IL-1β levels were significantly elevated (P<0.01). CD22 and SHP-1 expression increased significantly (P<0.01), whereas p-Akt expression decreased (P<0.01). Compared with the model group, the medium- and high-dose HLJDT groups and the risperidone group showed markedly reduced biting and aggression (P<0.05, P<0.01) and prolonged attack latency (P<0.01). MOG, MBP, and PLP levels and MAG fluorescence intensity were significantly increased (P<0.05, P<0.01). INOS, CD86, TNF-α, IL-6, and IL-1β levels decreased significantly (P<0.05, P<0.01). CD22 and SHP-1 expression decreased, while p-Akt expression increased significantly (P<0.05, P<0.01). ConclusionHLJDT may modulate CD22/SHP-1/p-Akt signaling in the VMHvl, promote the shift of MG toward an anti-inflammatory and phagocytic phenotype, enhance myelin repair, and improve agitation-like behaviors in VAD mice.
2.Clinical Efficacy and Mechanism of Bupi Qingfei Prescription in Treating Stable Bronchiectasis
Zi YANG ; Guangsen LI ; Bing WANG ; Bo XU ; Jianxin WANG ; Sheng CAO ; Xinyan CHEN ; Xia SHI ; Qing MIAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):162-169
ObjectiveTo explore the clinical efficacy and mechanism of Bupi Qingfei prescription (BPQF) in treating stable bronchiectasis in the patients with syndromes of lung-spleen Qi deficiency and phlegm-heat accumulation in the lungs. MethodsA randomized, double-blind, placebo-controlled trial was conducted. Patients were randomized into BPQF and placebo control (PC) groups. On the basis of conventional Western medicine treatment, the BPQF granules and placebo were respectively administered at 10 g each time, twice a day, for a course of 24 weeks. The TCM symptom scores, Quality of Life Questionnaire for Bronchiectasis (QOL-B) scores, lung function indicators, T lymphocyte subsets, level of inflammatory factors in the sputum, level of neutrophil elastase (NE) in the sputum, and occurrence of adverse reactions were observed before and after treatment in the two groups. ResultsA total of 64 patients completed the study, encompassing 32 in the BPQF group and 32 in the PC group. After treatment, the BPQF group showed decreased TCM symptom scores (P<0.01), increased QOL-B scores (P<0.01), and declined levels of tumor necrosis factor (TNF)-α and NE (P<0.05, P<0.01). The PC group showed decreased TCM symptom (except spleen deficiency) scores (P<0.01), increased the QOL-B health cognition and respiratory symptom domain scores (P<0.05, P<0.01), and a declined TNF-α level (P<0.01). Moreover, the BPQF group had lower TCM symptom (except chest tightness) scores (P<0.05, P<0.01), higher QOL-B (except treatment burden) scores (P<0.05, P<0.01), and lower levels of interleukin-6 and TNF-α (P<0.05) than the PC group. Neither group showed serious adverse reactions during the treatment process. ConclusionBPQF can ameliorate the clinical symptoms of stable bronchiectasis patients who have lung-spleen Qi deficiency or phlegm-heat accumulation in the lungs by regulating the immune balance and inhibiting airway inflammatory responses.
3.Erjingwan Alleviate Inflammatory Response and Apoptosis in Skeletal Muscle Cells of Sarcopenia via SIRT1/Nrf2/HO-1 Signaling Pathway
Long SHI ; Yang LI ; Hongyu YAN ; Tianle ZHOU ; Zhiwen ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):57-66
ObjectiveTo investigate the effects of the classical Chinese medicine compound prescription Erjingwan on the inflammatory response and apoptosis of skeletal muscle cells in a mouse model of sarcopenia and decipher the mechanism based on the silent information regulator 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. MethodsForty C57/BL6 male mice were randomized into a control group, a model group, and groups with different doses of Erjingwan (8,16,32 g·kg-1). The mouse model of sarcopenia was established by D-gal-induced skeletal muscle senescence. The body weight and grip strength of mice treated with different doses of Erjingwan were examined to evaluate their physiological functions. Hematoxylin-eosin (HE) staining and Masson staining were used to observe the pathological changes and fibrosis in the skeletal muscle of mice. Enzyme-linked immunosorbent assay (ELISA) was adopted to determine the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the serum samples of mice, and biochemical tests were conducted to quantify the levels of superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) in the serum. The protein and mRNA levels of SIRT1, Nrf2, B-cell lymphoma (Bcl-2), and Bcl-2-associated X protein (Bax) were determined by Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), respectively. ResultsAfter 4 weeks of drug intervention, the model group exhibited significant reductions in body weight and grip strength (P0.01) compared with the control group. Compared with the model group, all doses of Erjingwan increased the body weight in mice at week 8 (P0.01) and grip strength from week 6 (P0.01). HE staining revealed clear muscle fiber structure in the control group, muscle fiber rupture and atrophy in the model group, and dose-dependent repair of muscle fiber structure in the Erjingwan groups. Masson staining showed minimal collagen fibers and mild fibrosis in the control group, collagen fiber proliferation and severe fibrosis in the model group, and collagen proliferation with dose-dependent inhibition of fibrosis in the Erjingwan groups. ELISA results showed that serum levels of TNF-α and IL-6 were elevated in the model group compared with those in the control group (P0.01). After intervention, the low-dose Erjingwan group exhibited a decreased TNF-α level (P0.05), while the medium and high-dose groups showed decreases in both TNF-α and IL-6 levels (P0.01). Biochemical assays revealed that the model group had decreased SOD and GSH levels (P0.01) and an increased MDA level (P0.01) compared with the control group. The medium and high-dose Erjingwan groups exhibited increases in SOD and GSH levels (P0.01) and decreases in MDA level (P0.01), compared with the model group. WB and Real-time PCR results showed that compared with the control group, the model group presented down-regulated protein and mRNA levels of SIRT1, Nrf2, HO-1, and Bcl-2 in the muscle tissue (P0.01) and up-regulated protein and mRNA levels of Bax (P0.01). Compared with the model group, Erjingwan at different doses up-regulated the protein levels of SIRT1, Nrf2, HO-1, and Bcl-2 (P0.01) and down-regulated the protein and mRNA levels of Bax (P0.01) in the muscle tissue. Low-dose Erjingwan elevated the mRNA levels of Nrf2 and HO-1 (P0.05, P0.01), and medium and high-dose Erjingwan up-regulated the mRNA levels of SIRT1, Nrf2, HO-1, and Bcl-2 (P0.01). ConclusionErjingwan reduced the content of inflammatory factors in skeletal muscle cells, improved the antioxidant capacity, and attenuated pathological changes and fibrosis in the muscle of the mouse model of sarcopenia by regulating the SIRT1/Nrf2/HO-1 pathway, inflammatory response, and apoptosis network.
4.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
5.Mechanism of Yizhi Qingxin Prescription in Regulating PKA/CaN Pathway to Improve Cognitive Function in Alzheimer's Disease Model Mice
Xiaochen GUO ; Jiangang LIU ; Dandan SHI ; Ziqi NING ; Yaoyao ZHANG ; Fang LIU ; Meixia LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):97-108
ObjectiveTo explore the mechanism by which Yizhi Qingxin prescription improves mitochondrial dysfunction in Alzheimer's disease (AD) through regulating mitochondrial Ca2+ homeostasis and kinetic balance based on the protein kinase A (PKA)/calcineurin (CaN) signaling pathway. MethodsSixty three-month-old amyloid precursor protein (APP)/presenilin 1 (PS1) double transgenic mice were randomly divided into a model group, a donepezil group(0.65 mg·kg-1), a low-dose Yizhi Qingxin prescription group (YQF-L,2.6 g·kg-1), a medium-dose Yizhi Qingxin prescription group (YQF-M,5.2 g·kg-1), and a high-dose Yizhi Qingxin prescription group (YQF-H,10.4 g·kg-1), with 12 mice in each group. Twelve C57BL/6J mice with the same genetic background served as a normal group. Each treatment group received gavage administration daily, with the model and normal groups receiving equal volume of physiological saline. Intervention continued for 12 consecutive weeks. The learning and memory abilities of the mice were assessed using the novel object recognition (NOR) and Morris water maze (MWM) tests. Hematoxylin-eosin (HE)/Nissl staining was used to observe histopathological changes in the hippocampus. Transmission electron microscopy (TEM) was used to observe mitochondrial ultrastructure. Fluo-4 acetoxymethyl ester (Fluo-4 AM) Ca2+ probe was used to measure intracellular Ca2+ concentration in brain tissue. Western blot was used to determine the protein expression of PKA, CaN, sodium/calcium/lithium exchanger (NCLX), mitochondrial calcium uniporter (MCU), calmodulin (CaM), dynamin-related protein 1 (Drp1), and phosphorylated dynamin-related protein 1 (serine 637 site) [p-Drp1(S637)] in the hippocampus. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to measure the expression of PKA, CaN, CaM, NCLX, MCU, and Drp1 mRNAs. ResultsCompared with those in the normal group, the recognition index (RI) of the model group decreased (P0.01), and the number of crossings through the original platform area, the duration of stay in the target quadrant, and the distance were reduced (P0.01). The protein expression of PKA, NCLX, and p-DRP1 (ser637) significantly decreased (P0.05), and the mRNA expression of PKA and NCLX significantly decreased (P0.05). The escape latency (EL) was prolonged (P0.05), and the intracellular Ca2+ level significantly increased (P0.01). The protein expression of CaN, CaM, MCU, and Drp1, as well as the mRNA expression of CaN, MCU, and Drp1, significantly increased (P0.05). After intervention with Donepezil and Yizhi Qingxin prescription, compared with that in the model group, the RI of the treatment group significantly increased (P0.05), and the number of crossings through the platform and the duration of stay in the target quadrant significantly increased (P0.05). The protein expression of PKA, NCLX, and p-Drp1 (ser637) and the mRNA expression of PKA and NCLX significantly increased (P0.05). On the 4th and 5th days, the EL was shortened (P0.05), and the intracellular Ca2+ level decreased (P0.05). The protein expression of CaN, CaM, MCU, and Drp1 and the mRNA expression of CaN, MCU, and Drp1 significantly decreased (P0.05). ConclusionYizhi Qingxin prescription regulates the PKA/CaN pathway, upregulates the expression of PKA, NCLX, and p-Drp1 (ser637) proteins, reduces the expression of CaN, CaM, MCU, and Drp1 proteins, and regulates Ca2+ homeostasis and mitochondrial dynamic balance, thereby enhancing the spatial learning and memory abilities of AD mice.
6.Erjingwan Alleviate Inflammatory Response and Apoptosis in Skeletal Muscle Cells of Sarcopenia via SIRT1/Nrf2/HO-1 Signaling Pathway
Long SHI ; Yang LI ; Hongyu YAN ; Tianle ZHOU ; Zhiwen ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):57-66
ObjectiveTo investigate the effects of the classical Chinese medicine compound prescription Erjingwan on the inflammatory response and apoptosis of skeletal muscle cells in a mouse model of sarcopenia and decipher the mechanism based on the silent information regulator 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. MethodsForty C57/BL6 male mice were randomized into a control group, a model group, and groups with different doses of Erjingwan (8,16,32 g·kg-1). The mouse model of sarcopenia was established by D-gal-induced skeletal muscle senescence. The body weight and grip strength of mice treated with different doses of Erjingwan were examined to evaluate their physiological functions. Hematoxylin-eosin (HE) staining and Masson staining were used to observe the pathological changes and fibrosis in the skeletal muscle of mice. Enzyme-linked immunosorbent assay (ELISA) was adopted to determine the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the serum samples of mice, and biochemical tests were conducted to quantify the levels of superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) in the serum. The protein and mRNA levels of SIRT1, Nrf2, B-cell lymphoma (Bcl-2), and Bcl-2-associated X protein (Bax) were determined by Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), respectively. ResultsAfter 4 weeks of drug intervention, the model group exhibited significant reductions in body weight and grip strength (P0.01) compared with the control group. Compared with the model group, all doses of Erjingwan increased the body weight in mice at week 8 (P0.01) and grip strength from week 6 (P0.01). HE staining revealed clear muscle fiber structure in the control group, muscle fiber rupture and atrophy in the model group, and dose-dependent repair of muscle fiber structure in the Erjingwan groups. Masson staining showed minimal collagen fibers and mild fibrosis in the control group, collagen fiber proliferation and severe fibrosis in the model group, and collagen proliferation with dose-dependent inhibition of fibrosis in the Erjingwan groups. ELISA results showed that serum levels of TNF-α and IL-6 were elevated in the model group compared with those in the control group (P0.01). After intervention, the low-dose Erjingwan group exhibited a decreased TNF-α level (P0.05), while the medium and high-dose groups showed decreases in both TNF-α and IL-6 levels (P0.01). Biochemical assays revealed that the model group had decreased SOD and GSH levels (P0.01) and an increased MDA level (P0.01) compared with the control group. The medium and high-dose Erjingwan groups exhibited increases in SOD and GSH levels (P0.01) and decreases in MDA level (P0.01), compared with the model group. WB and Real-time PCR results showed that compared with the control group, the model group presented down-regulated protein and mRNA levels of SIRT1, Nrf2, HO-1, and Bcl-2 in the muscle tissue (P0.01) and up-regulated protein and mRNA levels of Bax (P0.01). Compared with the model group, Erjingwan at different doses up-regulated the protein levels of SIRT1, Nrf2, HO-1, and Bcl-2 (P0.01) and down-regulated the protein and mRNA levels of Bax (P0.01) in the muscle tissue. Low-dose Erjingwan elevated the mRNA levels of Nrf2 and HO-1 (P0.05, P0.01), and medium and high-dose Erjingwan up-regulated the mRNA levels of SIRT1, Nrf2, HO-1, and Bcl-2 (P0.01). ConclusionErjingwan reduced the content of inflammatory factors in skeletal muscle cells, improved the antioxidant capacity, and attenuated pathological changes and fibrosis in the muscle of the mouse model of sarcopenia by regulating the SIRT1/Nrf2/HO-1 pathway, inflammatory response, and apoptosis network.
7.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
8.Mechanism of Yizhi Qingxin Prescription in Regulating PKA/CaN Pathway to Improve Cognitive Function in Alzheimer's Disease Model Mice
Xiaochen GUO ; Jiangang LIU ; Dandan SHI ; Ziqi NING ; Yaoyao ZHANG ; Fang LIU ; Meixia LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):97-108
ObjectiveTo explore the mechanism by which Yizhi Qingxin prescription improves mitochondrial dysfunction in Alzheimer's disease (AD) through regulating mitochondrial Ca2+ homeostasis and kinetic balance based on the protein kinase A (PKA)/calcineurin (CaN) signaling pathway. MethodsSixty three-month-old amyloid precursor protein (APP)/presenilin 1 (PS1) double transgenic mice were randomly divided into a model group, a donepezil group(0.65 mg·kg-1), a low-dose Yizhi Qingxin prescription group (YQF-L,2.6 g·kg-1), a medium-dose Yizhi Qingxin prescription group (YQF-M,5.2 g·kg-1), and a high-dose Yizhi Qingxin prescription group (YQF-H,10.4 g·kg-1), with 12 mice in each group. Twelve C57BL/6J mice with the same genetic background served as a normal group. Each treatment group received gavage administration daily, with the model and normal groups receiving equal volume of physiological saline. Intervention continued for 12 consecutive weeks. The learning and memory abilities of the mice were assessed using the novel object recognition (NOR) and Morris water maze (MWM) tests. Hematoxylin-eosin (HE)/Nissl staining was used to observe histopathological changes in the hippocampus. Transmission electron microscopy (TEM) was used to observe mitochondrial ultrastructure. Fluo-4 acetoxymethyl ester (Fluo-4 AM) Ca2+ probe was used to measure intracellular Ca2+ concentration in brain tissue. Western blot was used to determine the protein expression of PKA, CaN, sodium/calcium/lithium exchanger (NCLX), mitochondrial calcium uniporter (MCU), calmodulin (CaM), dynamin-related protein 1 (Drp1), and phosphorylated dynamin-related protein 1 (serine 637 site) [p-Drp1(S637)] in the hippocampus. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to measure the expression of PKA, CaN, CaM, NCLX, MCU, and Drp1 mRNAs. ResultsCompared with those in the normal group, the recognition index (RI) of the model group decreased (P0.01), and the number of crossings through the original platform area, the duration of stay in the target quadrant, and the distance were reduced (P0.01). The protein expression of PKA, NCLX, and p-DRP1 (ser637) significantly decreased (P0.05), and the mRNA expression of PKA and NCLX significantly decreased (P0.05). The escape latency (EL) was prolonged (P0.05), and the intracellular Ca2+ level significantly increased (P0.01). The protein expression of CaN, CaM, MCU, and Drp1, as well as the mRNA expression of CaN, MCU, and Drp1, significantly increased (P0.05). After intervention with Donepezil and Yizhi Qingxin prescription, compared with that in the model group, the RI of the treatment group significantly increased (P0.05), and the number of crossings through the platform and the duration of stay in the target quadrant significantly increased (P0.05). The protein expression of PKA, NCLX, and p-Drp1 (ser637) and the mRNA expression of PKA and NCLX significantly increased (P0.05). On the 4th and 5th days, the EL was shortened (P0.05), and the intracellular Ca2+ level decreased (P0.05). The protein expression of CaN, CaM, MCU, and Drp1 and the mRNA expression of CaN, MCU, and Drp1 significantly decreased (P0.05). ConclusionYizhi Qingxin prescription regulates the PKA/CaN pathway, upregulates the expression of PKA, NCLX, and p-Drp1 (ser637) proteins, reduces the expression of CaN, CaM, MCU, and Drp1 proteins, and regulates Ca2+ homeostasis and mitochondrial dynamic balance, thereby enhancing the spatial learning and memory abilities of AD mice.
9.Pathogenesis and Prevention Strategies of Hypercoagulable State in Malignant Tumors Based on the Theory of "Sweet-Flavored Medicinals Retaining and Restoring Body Fluid"
Yong WANG ; Zixuan CHENG ; Weiyang KONG ; Yuwei SUN ; Yunxuan SHI ; Ruyu QIN ; Zhaidong LIU
Journal of Traditional Chinese Medicine 2026;67(1):26-30
Based on the theory of "sweet-flavored medicinals retaining and restoring body fluid", this paper proposed that the core pathogenesis of hypercoagulable state in malignant tumors is qi deficiency and fluid consumption, blood stasis and vessels stagnation, which evolves dynamically according to the pattern "qi deficiency → fluid consumption → blood stasis". Accordingly, a staged treatment system is established with the general principle of "fortifying the middle jiao, restoring fluid and activating blood circulation". In the initial stage, invigorating the spleen and boosting qi to generate body fluid, targeting the onset of middle jiao deficiency and body fluid consumption; in the middle stage, nourishing yin and unblocking collaterals to facilitate body fluid circulation, addressing the disorder of body fluid transportation and collateral injury caused by internal dryness; in the late stage, consolidating yin and resolving blood stasis to retain body fluid, resolving yin impairment, fluid exhaustion, and binding of stasis and toxin. By regulating body fluid metabolism to improve the hypercoagulable state, this system is intended to provide insights for the prevention and treatment of hypercoagulable state in malignant tumors with traditional Chinese medicine.
10.Research progress on 4D printing technology for bone tissue engineering
WANG Peiyu ; SHI Yaru ; SUN Yifan ; XU Xiaowei
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(1):75-85
The repair of bone defects is heavily influenced by the dynamic osteogenic microenvironment. Static scaffolds constructed by traditional 3D printing technology cannot simulate the dynamic nature of the microenvironment during bone defect repair due to the fixed structure, uncontrollable release of active factors, and difficult regeneration of blood vessels, among other factors. Breaking through the limitations of these static scaffolds and realizing the intelligent and dynamic regulation of the osteogenic microenvironment is a key scientific issue in the field of bone tissue engineering. 4D printing technology combines the dynamic responsiveness of bone restoration materials with the concept of intelligent design to regulate the micro and macro structure of scaffolds. This technology provides a new method for bone tissue engineering by responding to endogenous and exogenous stimuli and creating a better osteogenic microenvironment through functionalized design, including drug delivery and antibacterial function. However, this technology currently suffers from challenges related to dynamic response material design, insufficient precision of printing technology, and mismatches between multi-stimulus response systems, metabolic rhythms of bone tissue, and functionalized composite scaffolds. Future research should focus on the development of smart response materials with excellent dynamic responses and bioactivity, the creation of new printing technologies, and the design of personalized and precise bone repair solutions. The aim of this paper is to review the current research status of 4D printing for bone tissue engineering in terms of material types, response mechanisms, and applications to provide a theoretical basis for the development and clinical application of functional bone repair materials in the future.


Result Analysis
Print
Save
E-mail