1.Shewanella biofilm formation regulated by acyl-homoserine lactones and its application in UO22+ electrosorption.
Tingting LIU ; Hong SHU ; Qian LI ; Zhao CUI ; Guangyue LI ; Ting LI ; Yongdong WANG ; Jing SUN
Chinese Journal of Biotechnology 2025;41(8):3081-3097
Shewanella oneidensis MR-1, a Gram-negative bacterium with a significant role in the adsorption and reduction of uranium in wastewater and a quorum-sensing effect, can be used to remove uranium from wastewater. Exogenous signaling molecules (acyl-homoserine lactones, AHLs) can be added to induce the quorum sensing behavior for rapid biofilm formation, thereby improving the removal efficiency of this bacterium for uranium. Extracellular polymeric substances (EPS), as the significant components of biofilm, play a key role in biofilm formation. To investigate the quorum sensing behavior induced by AHLs, we systematically investigated the effects of AHLs on the EPS secretion and biofilm properties of S. oneidensis MR-1 by regulating parameters such as AHL species, concentration, addition time point, and contact time. The results showed that the addition of 10 μmol/L N-butyryl-l-homoserine lactone (C4-HSL) after 6 h of culture and continued incubation to reach the time point of 72 h significantly promoted the secretion of EPSs, in which the content of extracellular proteins and extracellular polysaccharides was increased by 15.2% and 28.2%, respectively, compared with that of the control group. The biofilm electrodes induced by signaling molecules showed superior properties, which were evidenced by an increase of exceeding 20 μm in biofilm thickness, an increase of 33.9% in the proportion of living cells, enhanced electroactivity, and an increase of 10.7% in the uranium removal rate. The biofilm electrode was confirmed to immobilize uranium in wastewater mainly by electrosorption, physicochemical adsorption, and electro-reduction through characterization means such as X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). This study provides a new technical idea for the efficient recovery of uranium in wastewater and enriches the theoretical system of quorum sensing regulation of electroactive biofilms.
Biofilms/drug effects*
;
Acyl-Butyrolactones/pharmacology*
;
Quorum Sensing/drug effects*
;
Uranium/metabolism*
;
Shewanella/metabolism*
;
Adsorption
;
Uranium Compounds/metabolism*
;
Wastewater/chemistry*
;
Biodegradation, Environmental
;
Extracellular Polymeric Substance Matrix/metabolism*
2.Advances in electrochemically active biofilm of Shewanella oneidensis MR-1.
Chinese Journal of Biotechnology 2023;39(3):881-897
Facing the increasingly severe energy shortage and environmental pollution, electrocatalytic processes using electroactive microorganisms provide a new alternative for achieving environmental-friendly production. Because of its unique respiratory mode and electron transfer ability, Shewanella oneidensis MR-1 has been widely used in the fields of microbial fuel cell, bioelectrosynthesis of value-added chemicals, metal waste treatment and environmental remediation system. The electrochemically active biofilm of S. oneidensis MR-1 is an excellent carrier for transferring the electrons of the electroactive microorganisms. The formation of electrochemically active biofilm is a dynamic and complex process, which is affected by many factors, such as electrode materials, culture conditions, strains and their metabolism. The electrochemically active biofilm plays a very important role in enhancing bacterial environmental stress resistance, improving nutrient uptake and electron transfer efficiency. This paper reviewed the formation process, influencing factors and applications of S. oneidensis MR-1 biofilm in bio-energy, bioremediation and biosensing, with the aim to facilitate and expand its further application.
Bioelectric Energy Sources/microbiology*
;
Biofilms
;
Electrodes
;
Electron Transport
;
Shewanella/metabolism*
3.Binding of Shewanella FadR to the fabA fatty acid biosynthetic gene: implications for contraction of the fad regulon.
Huimin ZHANG ; Beiwen ZHENG ; Rongsui GAO ; Youjun FENG
Protein & Cell 2015;6(9):667-679
The Escherichia coli fadR protein product, a paradigm/prototypical FadR regulator, positively regulates fabA and fabB, the two critical genes for unsaturated fatty acid (UFA) biosynthesis. However the scenario in the other Ɣ-proteobacteria, such as Shewanella with the marine origin, is unusual in that Rodionov and coworkers predicted that only fabA (not fabB) has a binding site for FadR protein. It raised the possibility of fad regulon contraction. Here we report that this is the case. Sequence alignment of the FadR homologs revealed that the N-terminal DNA-binding domain exhibited remarkable similarity, whereas the ligand-accepting motif at C-terminus is relatively-less conserved. The FadR homologue of S. oneidensis (referred to FadR_she) was over-expressed and purified to homogeneity. Integrative evidence obtained by FPLC (fast protein liquid chromatography) and chemical cross-linking analyses elucidated that FadR_she protein can dimerize in solution, whose identity was determined by MALDI-TOF-MS. In vitro data from electrophoretic mobility shift assays suggested that FadR_she is almost functionally-exchangeable/equivalent to E. coli FadR (FadR_ec) in the ability of binding the E. coli fabA (and fabB) promoters. In an agreement with that of E. coli fabA, S. oneidensis fabA promoter bound both FadR_she and FadR_ec, and was disassociated specifically with the FadR regulatory protein upon the addition of long-chain acyl-CoA thioesters. To monitor in vivo effect exerted by FadR on Shewanella fabA expression, the native promoter of S. oneidensis fabA was fused to a LacZ reporter gene to engineer a chromosome fabA-lacZ transcriptional fusion in E. coli. As anticipated, the removal of fadR gene gave about 2-fold decrement of Shewanella fabA expression by β-gal activity, which is almost identical to the inhibitory level by the addition of oleate. Therefore, we concluded that fabA is contracted to be the only one member of fad regulon in the context of fatty acid synthesis in the marine bacteria Shewanella genus.
Amino Acid Sequence
;
Bacterial Proteins
;
chemistry
;
metabolism
;
Base Sequence
;
Binding Sites
;
DNA, Bacterial
;
metabolism
;
Escherichia coli
;
genetics
;
metabolism
;
Fatty Acid Synthase, Type II
;
genetics
;
metabolism
;
Fatty Acids
;
biosynthesis
;
Gene Expression Regulation, Bacterial
;
drug effects
;
Molecular Sequence Data
;
Oleic Acid
;
pharmacology
;
Protein Binding
;
drug effects
;
Regulon
;
genetics
;
Repressor Proteins
;
chemistry
;
metabolism
;
Shewanella
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail