1.Seasonal distribution characteristics, source analysis and health risk assessment of polycyclic aromatic hydrocarbons in PM2.5 in Lianyungang City in 2019-2023
Shengnan GAO ; Jinkun LI ; Li CHEN ; Zhengdong XYU ; Hongru ZHU ; Jian WANG ; Zhiyang YAO
Journal of Public Health and Preventive Medicine 2025;36(1):65-69
Objective To study the seasonal distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) in PM2.5 in Lianyungang City, and analyze the sources of PAHs pollution, and to evaluate the health risks of PAHs in different seasons. Methods PM2.5 samples were collected regularly from January 2019 to December 2023, and 16 types of PAHs were determined by HPLC. Kruskal-Wallis H test was used to compare the concentrations of PM2.5 and PAHs in different years and seasons. The source of PAHs was analyzed by characteristic ratio and principal component analysis (PCA). Health risks were assessed using the BaP equivalent method and the incremental lifetime cancer risk (ILCR) model. Results The annual exceedance rates of PM2.5 and BaP in Lianyungang showed a decreasing trend from 2019 to 2023. PM2.5, total PAHs and PAHs monomers (except Ace, Flu and Acy) all showed significant seasonal differences, with the highest concentration in winter (P<0.001). The average proportion of 4-ring PAHs was the highest and the average proportion of 2-ring PAHs was the lowest. The proportion of 5-6 ring PAHs was relatively high in winter and spring. PM2.5and PAHs were negatively correlated with temperature, relative humidity and precipitation, and were positively correlated with atmospheric pressure. PM2.5 was negatively correlated with wind speed, while some PAHs monomers were positively correlated with wind speed. The characteristic ratio and PCA results showed that the main sources of PAHs in Lianyungang City were mixed sources of road dust and vehicle emissions, oil pollution sources and biomass combustion sources. The results of ILCR showed that the highest risk was found in adults, with males slightly higher than females. In Lianyungang, the maximum value of ILCR in winter was more than 10-6 in people over 9 years old. Conclusion The main sources of PAHs in PM2.5 in Lianyungang City are mixed sources of road dust and vehicle emissions, oil pollution sources, and biomass combustion sources. Under the current exposure level of PAHs in PM2.5, residents have a certain potential carcinogenic risk.
2.Research progress on oxidative stress mechanism and traditional Chinese medicine intervention in varicocele-induced infertility
Shengnan LI ; Hongyan CHEN ; Tengfei CHEN ; Boxian GAO ; Chongfu ZHONG
China Pharmacy 2025;36(12):1536-1541
Varicocele-induced infertility (VCI) is a common andrological disease in clinical practice. Oxidative stress represents the primary mechanism through which varicocele causes male infertility. Traditional Chinese medicine (TCM) treatment, characterized by its multi-target, multi-component, multi-system, and multi-pathway actions, has achieved favorable outcomes in the field of VCI treatment. This paper summarizes the underlying oxidative stress mechanism of VCI and the relevant signaling pathways involved. By reviewing the current research status on how monomers, active fractions, compound formulas, and related preparations of TCM can intervene in oxidative stress through the regulation of these signaling pathways to improve VCI, it is found that the nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway, the mitogen-activated protein kinase (MAPK) signaling pathway, and the hypoxia-inducible factor-1α (HIF-1α) signaling pathway are closely related to the development of VCI. TCM monomers and active fractions (flavonoids from Cuscutae Semen, polysaccharides from Astragali Radix, curcumin, ginsenoside Rg1, hyperin and echinacoside), as well as compound formulas and related preparations of TCM (modified Dahuang zhechong granules, Shengjing huoxue formula, modified Tianxiong san, Tongjingling, Bushen huoxue formula, Mailuoshutong pill, Zishen yutai pill, Danhong tongjing formula) can alleviate oxidative stress, reduce lipid peroxidation damage, improve mitochondrial dysfunction, decrease sperm DNA fragmentation, and inhibit apoptosis by activating the Nrf2 signaling pathways and inhibiting the MAPK and HIF-1α signaling pathways, thereby improving reproductive function.
3.Research on the framework construction and promotion strategy of medical care capability based on the core literacy of palliative care
Shenghua DING ; Yongmei LIU ; Hongjuan CHEN ; Weiwei WANG ; Shengnan ZHAO
Chinese Medical Ethics 2025;38(7):943-948
This paper aims to discuss the construction and promotion strategy of medical care capacity framework based on the core literacy of palliative care, combining domestic and foreign research and clinical status. The research results show that it is particularly important to construct a framework of medical care competence based on palliative care. The core competencies required for palliative care include the ability to comprehensively evaluate and formulate personalized programs, effective communication skills, interdisciplinary teamwork skills, and the ability to continuously learn and improve themselves. The quality of care can be further improved if the above abilities are incorporated into the framework of medical care ability based on palliative care. However, there are a series of problems in the process of constructing the framework of palliative medical care capacity, such as difficult implementation of policy support, poor professionalism of talent team, single and irregular service model, low social acceptance, and difficult interdisciplinary cooperation and resource integration. After a detailed analysis of the problems, this paper puts forward the countermeasures to construct the framework of caring ability literacy based on palliative care. Effective countermeasures such as increasing policy support, cultivating comprehensive talents, developing diversified palliative care models, improving social recognition, and strengthening interdisciplinary cooperation and resource integration can effectively improve the core literacy and professional ability of medical care personnel, and then promote the development and improvement of palliative care services. In-depth discussion of the above contents can provide scientific reference for building a care model and literacy framework with palliative care as the core.
4.Nano drug delivery system based on natural cells and derivatives for ischemic stroke treatment.
Wei LV ; Yijiao LIU ; Shengnan LI ; Kewei REN ; Hufeng FANG ; Hua CHEN ; Hongliang XIN
Chinese Medical Journal 2025;138(16):1945-1960
Ischemic stroke (IS) ranks as a leading cause of death and disability globally. The blood-brain barrier (BBB) poses significant challenges for effective drug delivery to brain tissues. Recent decades have seen the development of targeted nanomedicine and biomimetic technologies, sparking substantial interest in biomimetic drug delivery systems for treating IS. These systems are devised by utilizing or replicating natural cells and their derivatives, offering promising new pathways for detection and transport across the BBB. Their multifunctionality and high biocompatibility make them effective treatment options for IS. In addition, the incorporation of engineering techniques has provided these biomimetic drug delivery systems with active targeting capabilities, enhancing the accumulation of therapeutic agents in ischemic tissues and specific cell types. This improvement boosts drug transport and therapeutic efficacy. However, it is crucial to thoroughly understand the advantages and limitations of various engineering strategies employed in constructing biomimetic delivery systems. Selecting appropriate construction methods based on the characteristics of the disease is vital to achieving optimal treatment outcomes. This review summarizes recent advancements in three types of engineered biomimetic drug delivery systems, developed from natural cells and their derivatives, for treating IS. It also discusses their effectiveness in application and potential challenges in future clinical translation.
Humans
;
Drug Delivery Systems/methods*
;
Ischemic Stroke/drug therapy*
;
Animals
;
Blood-Brain Barrier/metabolism*
;
Stroke/drug therapy*
5.Artificial mesenchymal stem cell extracellular vesicles enhanced ischemic stroke treatment through targeted remodeling brain microvascular endothelial cells.
Shengnan LI ; Wei LV ; Jiangna XU ; Jiaqing YIN ; Yuqin CHEN ; Linfeng LIU ; Xiang CAO ; Wenjing LI ; Zhen LI ; Hua CHEN ; Hongliang XIN
Acta Pharmaceutica Sinica B 2025;15(8):4248-4264
Ischemic stroke is the leading cause of disability and mortality worldwide. The blood‒brain barrier (BBB) is the first line of defense after ischemic stroke. Disruption of the BBB induced by brain microvascular endothelial cells (BMECs) dysfunction is a key event that triggers secondary damage to the central nervous system, where blood-borne fluids and immune cells penetrate the brain parenchyma, causing cerebral edema and inflammatory response and further aggravating brain damage. Here, we develop a novel artificial mesenchymal stem cell (MSC) extracellular vesicles by integrating MSC membrane proteins into liposomal bilayers, which encapsulated miR-132-3p with protective effects on BMECs. The artificial extracellular vesicles (MSCo/miR-132-3p) had low immunogenicity to reduce non-specific clearance by the mononuclear phagocytosis system (MPS) and could target ischemia-injured BMECs. After internalization into the damaged BMECs, MSCo/miR-132-3p escaped the lysosomes via the HII phase transition of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and decreased cellular reactive oxygen species (ROS) and apoptosis levels by regulating the RASA1/RAS/PI3K/AKT signaling pathway. In the transient middle cerebral artery occlusion (tMCAO) models, MSCo/miR-132-3p targeted impaired brain regions (approximately 9 times the accumulation of plain liposomes at 12 h), reduced cerebral vascular disruption, protected BBB integrity, and decreased infarct volume (from 44.95% to 6.99%).
6.13-Docosenamide Enhances Oligodendrocyte Precursor Cell Differentiation via USP33-Mediated Deubiquitination of CNR1 in Chronic Cerebral Hypoperfusion.
Yuhao XU ; Yi TAN ; Zhi ZHANG ; Duo CHEN ; Chao ZHOU ; Liang SUN ; Shengnan XIA ; Xinyu BAO ; Haiyan YANG ; Yun XU
Neuroscience Bulletin 2025;41(11):1939-1956
Chronic cerebral hypoperfusion leads to white matter injury (WMI), which plays a significant role in contributing to vascular cognitive impairment. While 13-docosenamide is a type of fatty acid amide, it remains unclear whether it has therapeutic effects on chronic cerebral hypoperfusion. In this study, we conducted bilateral common carotid artery stenosis (BCAS) surgery to simulate chronic cerebral hypoperfusion-induced WMI and cognitive impairment. Our findings showed that 13-docosenamide alleviates WMI and cognitive impairment in BCAS mice. Mechanistically, 13-docosenamide specifically binds to cannabinoid receptor 1 (CNR1) in oligodendrocyte precursor cells (OPCs). This interaction results in an upregulation of ubiquitin-specific peptidase 33 (USP33)-mediated CNR1 deubiquitination, subsequently increasing CNR1 protein expression, activating the phosphorylation of the AKT/mTOR pathway, and promoting the differentiation of OPCs. In conclusion, our study suggests that 13-docosenamide can ameliorate chronic cerebral hypoperfusion-induced WMI and cognitive impairment by enhancing OPC differentiation and could serve as a potential therapeutic drug.
Animals
;
Oligodendrocyte Precursor Cells/metabolism*
;
Mice
;
Cell Differentiation/drug effects*
;
Male
;
Receptor, Cannabinoid, CB1/metabolism*
;
Mice, Inbred C57BL
;
Ubiquitin Thiolesterase/metabolism*
;
Ubiquitination/drug effects*
;
Carotid Stenosis/complications*
;
Cognitive Dysfunction/drug therapy*
7.Circ-DDX5 inhibits the proliferation and invasion of human breast cancer cell lines by targeting miR-3940
Jiangli LI ; Jing SUN ; Yijun TANG ; Junlan GUO ; Bo CHEN ; Shengnan GUO
Basic & Clinical Medicine 2024;44(1):1-7
Objective To investigate the expression of circular-RNA DDX5(circ-DDX5)in breast cancer tissues and its relationship with the clinical stage of breast cancer patients,and to analyze the regulatory mechanism of circ-DDX5 on the proliferation and invasion of human breast cancer cell line.Methods The expression level of circ-DDX5 in breast cancer tissues and its correlation with the clinical stage of breast cancer patients were analyzed by TCGA database.Bioinformatics analysis and dual-luciferase reporter gene experiments verified the targeting rela-tionship between circ-DDX5 and miR-3940.The correlation between circ-DDX5 and miR-3940 expression in breast cancer tissues was analyzed by TCGA database.The expression level of circ-DDX5 in breast cancer SK-BR-3,MDA-MB-231,BT-549,MCF-7,and HCC-1937 cells was detected by RT-qPCR.The circ-DDX5 over-expression plasmid and negative control plasmid were transfected into MDA-MB-231 cells,which were named circ-DDX5 group and NC group,respectively.The proliferation and invasion of MDA-MB-231 cells in the circ-DDX5 group and the NC group were detected by colony formation assay and Transwell assay.The expressions of proliferation pheno-type protein and invasion phenotype protein of MDA-MB-231 cells were detected by Western blot.The expression level of miR-3940 in MDA-MB-231 cells of circ-DDX5 group and NC group was detected by RT-qPCR.Results The expression of circ-DDX5 in breast cancer tissues was lower than that in adjacent tissues(P<0.01)and the ex-pression level of circ-DDX5 was negatively correlated with the clinical stage of breast cancer patients(P<0.01).There was a targeting relationship between circ-DDX5 and miR-3940(P<0.01).The expression of circ-DDX5 and miR-3940 in breast cancer tissue was negatively correlated(P<0.01).The expression of circ-DDX5 in human breast cancer cell lines was lower than that in immortalized breast epithelial cells MCF-10A(P<0.05 or P<0.01).Compared with the NC group,the over-expression of circ-DDX5 could significantly inhibit the proliferation and in-vasion of MDA-MB-231 cells(P<0.01),as well as the proliferation phenotype proteins(cyclin C,CDK3)and in-vasion phenotype proteins(Snail,vimentin)expression(P<0.01)and miR-3940 expression(P<0.01).Conclu-sions The expression of circ-DDX5 in breast cancer tissues and cells is low.circ-DDX5 inhibits the proliferation and invasion of breast cancer MDA-MB-231 cells by targeting the expression of miR-3940.
8.Clinical features and serum lipidomic profile of patients with nonalcoholic fatty liver disease and healthy individuals in the overweight population
Xiaoyan CHEN ; Yifu YUAN ; Shengnan DU ; Qin CAO ; Yuanye JIANG
Journal of Clinical Hepatology 2024;40(2):284-291
objectiveTo investigate the differences in clinical indices and lipid metabolism between the patients with nonalcoholic fatty liver disease (NAFLD) and healthy individuals in the overweight population. MethodsIn this study, body mass index (BMI)>23 kg/m2 was defined as overweight. A total of 62 overweight patients with NAFLD who were admitted to Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine from August 2020 to April 2021 were enrolled as overweight NAFLD group, and 50 overweight individuals who underwent physical examination during the same period of time were enrolled as control group. Clinical information and blood biochemical parameters were recorded for all subjects. Ultra-performance liquid chromatography-tandem mass spectrometry was used to analyze serum lipidomic profile, and principal component analysis and orthogonal partial least squares-discriminant analysis were used to perform the multivariate statistical analysis of lipidomic data. The chi-square test was used for comparison of categorical data between two groups, and the independent-samples t test or the Wilcoxon rank-sum test was used for comparison of continuous data between two groups. ResultsThe overweight NAFLD group had a significantly higher BMI than the overweight control group (Z=-2.365, P=0.018). As for serological markers, compared with the overweight control group, the overweight NAFLD group had significantly higher levels of red blood cells, hemoglobin, hematocrit, uric acid, total protein, globulin, alkaline phosphatase, gamma-glutamyl transpeptidase, alanine aminotransferase, aspartate aminotransferase, cholinesterase, low-density lipoprotein, total cholesterol, triglyceride, apolipoprotein B, and blood glucose (all P<0.05). The lipidomic analysis showed that there was a significant difference in lipid metabolism between the two groups, and a total of 493 differentially expressed lipids were identified (VIP value>1, P<0.05), among which 143 lipids were significantly upregulated and 350 lipids were significantly downregulated in the overweight NAFLD group. The mean total fatty acid content in the overweight NAFLD group was 3.6 times that in the overweight control group. Compared with the overweight control group, the overweight NAFLD group had a significant reduction in the content of triglyceride with>3 unsaturated bonds (P<0.001) and a significant increase in the content of triglyceride with ≤3 unsaturated bonds (P<0.001). ConclusionCompared with healthy overweight individuals, overweight NAFLD patients tend to have significant abnormalities in some biochemical parameters and lipid metabolites, with significant increases in the content of fatty acid in blood and the types of saturated fat chains in triglycerides.
9.Role of Autophagy in Ulcerative Colitis and Chinese Medicine Intervention: A Review
Maoguang HUANG ; Sheng XIE ; Jinxin WANG ; Feng LUO ; Yunyan ZHANG ; Yueying CHEN ; Shengnan CAI ; Xiaoyan HUANG ; Liqun LI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(4):281-289
Ulcerative colitis (UC) is a chronic inflammatory bowel disease with complex etiology. The pathogenesis of this disease, due to a combination of factors, is complex and has not yet been elucidated. Among them, intestinal mucosal barrier damage is the basic pathological change of UC. As a non-destructive response of cells, autophagy regulates intestinal mucosal immunity, inflammation, oxidative stress, and bacterial homeostasis through degradation and reabsorption to actively repair damaged intestinal mucosal barrier, exerting a key role in the occurrence and development of UC. The disease is mainly treated clinically with aminosalicylic acid preparations, glucocorticoids, and immunosuppressants. Western medicine treatment of the disease has a fast onset of effect, and the short-term efficacy is definite, but the long-term application is easy to be accompanied by more adverse reactions. Moreover, some drugs are expensive, bringing great physical and mental pain and economic burden to patients. Therefore, it is urgent to explore new therapies with stable efficacy and mild adverse effects. In recent years, a large number of studies have shown that Chinese medicine can regulate autophagy of the intestinal mucosa with multiple targets and effects and repair the intestinal mucosal barrier function, thereby inhibiting the development of UC. Many experiments have shown that the active ingredient or monomers and compound formulas of Chinese medicine can improve the immunity of the intestinal mucosa, inflammation, oxidative stress, and flora by regulating the level of autophagy to maintain the normal function of the intestinal mucosal barrier to effectively intervene in UC, providing a new measure for the prevention and treatment of UC. However, there is a lack of systematic review of Chinese medicine in regulating the level of autophagy in the intestinal mucosa for the prevention and treatment of UC. Therefore, based on the current research on UC, autophagy process, and Chinese medicine treatment, this article reviewed the relationship of autophagy and its key target proteins with UC to clarify the key role of autophagy in UC production and systematically summarized Chinese medicines targeting the regulation of autophagy to treat UC in recent years to provide new ideas for the treatment and drug development of UC.
10.Ameliorative effect and mechanism of Sanwei ganlu on hepatic fibrosis in rats
Xiumei CHEN ; Yingjie WANG ; Chengzhou ZHAO ; Zhen LI ; Wenhuiping ZHANG ; Tangjun LUO ; Xin LIU ; Shengnan SUN
China Pharmacy 2024;35(6):707-711
OBJECTIVE To investigate the ameliorative effects and mechanism of Sanwei ganlu on hepatic fibrosis in rats. METHODS The rats were randomly divided into normal group, model group, silibinin group (positive control, 50 mg/kg), and Sanwei ganlu low-dose, medium-dose, and high-dose groups (80, 250, 800 mg/kg). Except for normal group, hepatic fibrosis rat models were established by intraperitoneal injection of CCl4 in the other groups of rats. Starting from the 6th week of modeling administration, they were given normal saline or corresponding drugs intragastrically at the same time. At the end of the ninth-week experiment, liver and spleen indexes of rats were calculated; the pathological structure and fibrosis changes of liver tissue were observed by HE, Masson and Sirus Red staining. The contents of alanine transaminase (ALT), aspartate transaminase (AST), procollagen type Ⅲ (PC Ⅲ), collagen type Ⅳ (COL-Ⅳ), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and IL-1β in serum, and hyaluronic acid (HA) and laminin (LN) in liver tissue were all detected. RESULTS Compared with the model group, the liver injury and collagen fiber deposition of rats were improved to different extents in Sanwei ganlu groups and silibinin group; the contents of ALT, AST, PC Ⅲ, COL-Ⅳ, IL-6, TNF-α and IL-1β in serum as well as the contents of HA and LN in liver tissue significantly decreased (P<0.05 or P<0.01). CONCLUSIONS Sanwei ganlu can alleviate the progression of hepatic fibrosis in rats, possibly by inhibiting the synthesis of collagen fiber, reducing transaminase content, down-regulating the levels of HA, LN, PC Ⅲ and COL-Ⅳ, and reducing the inflammatory response.


Result Analysis
Print
Save
E-mail