1.A synthetic peptide, derived from neurotoxin GsMTx4, acts as a non-opioid analgesic to alleviate mechanical and neuropathic pain through the TRPV4 channel.
ShaoXi KE ; Ping DONG ; Yi MEI ; JiaQi WANG ; Mingxi TANG ; Wanxin SU ; JingJing WANG ; Chen CHEN ; Xiaohui WANG ; JunWei JI ; XinRan ZHUANG ; ShuangShuang YANG ; Yun ZHANG ; Linda M BOLAND ; Meng CUI ; Masahiro SOKABE ; Zhe ZHANG ; QiongYao TANG
Acta Pharmaceutica Sinica B 2025;15(3):1447-1462
Mechanical pain is one of the most common causes of clinical pain, but there remains a lack of effective treatment for debilitating mechanical and chronic forms of neuropathic pain. Recently, neurotoxin GsMTx4, a selective mechanosensitive (MS) channel inhibitor, has been found to be effective, while the underlying mechanism remains elusive. Here, with multiple rodent pain models, we demonstrated that a GsMTx4-based 17-residue peptide, which we call P10581, was able to reduce mechanical hyperalgesia and neuropathic pain. The analgesic effects of P10581 can be as strong as morphine but is not toxic in animal models. The anti-hyperalgesic effect of the peptide was resistant to naloxone (an μ-opioid receptor antagonist) and showed no side effects of morphine, including tolerance, motor impairment, and conditioned place preference. Pharmacological inhibition of TRPV4 by P10581 in a heterogeneous expression system, combined with the use of Trpv4 knockout mice indicates that TRPV4 channels may act as the potential target for the analgesic effect of P10581. Our study identified a potential drug for curing mechanical pain and exposed its mechanism.
2.Analysis of an acellular pigskin based nerve scaffold.
Bin LIU ; Jinxing KE ; Shaoxi CAI ; Xiaokun LI ; Lu ZHANG ; Wenqi CHEN ; Yaoguang ZHANG
Chinese Journal of Biotechnology 2012;28(3):349-357
A scaffold fabricated with lysine/nerve growth factor (NGF)/poly (lactic acid coglycolic acid) copolymer (PLGA) and acellular pigskin was evaluated in vitro as a potential artificial nerve scaffold. Properties of the scaffold such as microstructure, mechanical property, degradation behavior in PBS and water, Schwann cell adhesion property, and release of NGF were investigated. Results showed PLGA had permeated into the porous structure of acellular pigskin; its breaking strength was 8.308 MPa, breaking extensibility was 38.98%, elastic modulus was 97.27 MPa. The porosities of the scaffold ranged from 68.3% to 81.2% with densities from 0.62 g/cm3 to 0.68 g/cm3. At 4 weeks of degradation in vitro, maximum mass loss ratio was 43.3%. The release of NGF could still be detected on the 30th day, and its accumulative release rate was 38%. Lysine added into the scaffold neutralized the acidoid preventing degradation of PLGA to maintain a solution pH value. Schwann cells had grown across the scaffold after co-cultivation for 15 days. These in vitro properties of the pigskin based composite might indicate its potentiality to be an artificial nerve scaffold.
Acellular Dermis
;
Animals
;
Biocompatible Materials
;
Guided Tissue Regeneration
;
Lactic Acid
;
pharmacology
;
Lysine
;
pharmacology
;
Nerve Growth Factors
;
chemistry
;
pharmacology
;
Nerve Regeneration
;
Polyglycolic Acid
;
pharmacology
;
Swine
;
Tissue Engineering
;
Tissue Scaffolds

Result Analysis
Print
Save
E-mail