1.Effect and mechanism of Bufei Decoction on improving Klebsiella pneumoniae pneumonia in rats by regulating IL-17 signaling pathway.
Li-Na HUANG ; Zheng-Ying QIU ; Xiang-Yi PAN ; Chen LIU ; Si-Fan LI ; Shao-Guang GE ; Xiong-Wei SHI ; Hao CAO ; Rui-Hua XIN ; Fang-di HU
China Journal of Chinese Materia Medica 2025;50(11):3097-3107
Based on the interleukin-17(IL-17) signaling pathway, this study explores the effect and mechanism of Bufei Decoction on Klebsiella pneumoniae pneumonia in rats. SD rats were randomly divided into the control group, model group, Bufei Decoction low-dose group(6.68 g·kg~(-1)·d~(-1)), Bufei Decoction high-dose group(13.36 g·kg~(-1)·d~(-1)), and dexamethasone group(1.04 mg·kg~(-1)·d~(-1)), with 10 rats in each group. A pneumonia model was established by tracheal drip injection of K. pneumoniae. After successful model establishment, the improvement in lung tissue damage was observed following drug administration. Core targets and signaling pathways were screened using transcriptomics techniques. Real-time fluorescence quantitative polymerase chain reaction was used to detect the mRNA expression of core targets interleukin-6(IL-6), interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and chemokine CXC ligand 6(CXCL6). Western blot was used to assess key proteins in the IL-17 signaling pathway, including interleukin-17A(IL-17A), nuclear transcription factor-κB activator 1(Act1), tumor necrosis factor receptor-associated factor 6(TRAF6), and downstream phosphorylated p38 mitogen-activated protein kinase(p-p38 MAPK), and phosphorylated nuclear factor-κB p65(p-NF-κB p65). Apoptosis of lung tissue cells was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling(TUNEL). The results showed that, compared with the control group, the model group exhibited significant pathological damage in lung tissue. The mRNA expression of IL-6, IL-1β, TNF-α, and CXCL6, as well as the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly increased, and the number of apoptotic cells was notably higher, indicating successful model establishment. Compared with the model group, both low-and high-dose groups of Bufei Decoction showed reduced pathological damage in lung tissue. The mRNA expression levels of IL-6, IL-1β, TNF-α, and CXCL6, and the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly decreased, with a significant reduction in apoptotic cells in the high-dose group. In conclusion, Bufei Decoction can effectively improve lung tissue damage and reduce inflammation in rats with K. pneumoniae. The mechanism may involve the regulation of the IL-17 signaling pathway and the reduction of apoptosis.
Animals
;
Interleukin-17/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Rats
;
Male
;
Klebsiella pneumoniae/physiology*
;
Klebsiella Infections/immunology*
;
Humans
;
Lung/drug effects*
2.Explanation and interpretation of blood transfusion provisions for children with hematological diseases in the national health standard "Guideline for pediatric transfusion".
Ming-Yi ZHAO ; Rong HUANG ; Rong GUI ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(1):18-25
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion is one of the most commonly used supportive treatments for children with hematological diseases. This guideline provides guidance and recommendations for blood transfusions in children with aplastic anemia, thalassemia, autoimmune hemolytic anemia, glucose-6-phosphate dehydrogenase deficiency, acute leukemia, myelodysplastic syndromes, immune thrombocytopenic purpura, and thrombotic thrombocytopenic purpura. This article presents the evidence and interpretation of the blood transfusion provisions for children with hematological diseases in the "Guideline for pediatric transfusion", aiming to assist in the understanding and implementing the blood transfusion section of this guideline.
Humans
;
Child
;
Hematologic Diseases/therapy*
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
3.Explanation and interpretation of the compilation of blood transfusion provisions for children undergoing hematopoietic stem cell transplantation in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(2):139-143
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion for children undergoing hematopoietic stem cell transplantation is highly complex and challenging. This guideline provides recommendations on transfusion thresholds and the selection of blood components for these children. This article presents the evidence and interpretation of the transfusion provisions for children undergoing hematopoietic stem cell transplantation, with the aim of enhancing the understanding and implementation of the "Guideline for pediatric transfusion".
Humans
;
Hematopoietic Stem Cell Transplantation
;
Child
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
4.Explanation and interpretation of blood transfusion provisions for critically ill and severely bleeding pediatric patients in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI
Chinese Journal of Contemporary Pediatrics 2025;27(4):395-403
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Critically ill children often present with anemia and have a higher demand for transfusions compared to other pediatric patients. This guideline provides guidance and recommendations for blood transfusions in cases of general critical illness, septic shock, acute brain injury, extracorporeal membrane oxygenation, non-life-threatening bleeding, and hemorrhagic shock. This article interprets the background and evidence of the blood transfusion provisions for critically ill and severely bleeding children in the "Guideline for pediatric transfusion", aiming to enhance understanding and implementation of this aspect of the guidelines. Citation:Chinese Journal of Contemporary Pediatrics, 2025, 27(4): 395-403.
Humans
;
Critical Illness
;
Blood Transfusion/standards*
;
Child
;
Hemorrhage/therapy*
;
Practice Guidelines as Topic
5.Explanation and interpretation of blood transfusion provisions for children undergoing cardiac surgery in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Jin-Ping LIU
Chinese Journal of Contemporary Pediatrics 2025;27(7):778-785
To guide clinical blood transfusion practices in pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Children undergoing cardiac surgery are at high risk of bleeding, and the causes of perioperative anemia and coagulation disorders in neonates and children are complex and varied, often necessitating the transfusion of allogeneic blood components. This guideline provides direction and recommendations for specific measures in blood management for children undergoing cardiac surgery before, during, and after surgery. This article interprets the background and evidence for the formulation of the blood transfusion provisions for children undergoing cardiac surgery, hoping to facilitate the understanding and implementation of this guideline.
Humans
;
Cardiac Surgical Procedures
;
Blood Transfusion/standards*
;
Child
;
Practice Guidelines as Topic
6.Boosting synergism of chemo- and immuno-therapies via switching paclitaxel-induced apoptosis to mevalonate metabolism-triggered ferroptosis by bisphosphonate coordination lipid nanogranules.
Ge SONG ; Minghui LI ; Shumin FAN ; Mengmeng QIN ; Bin SHAO ; Wenbing DAI ; Hua ZHANG ; Xueqing WANG ; Bing HE ; Qiang ZHANG
Acta Pharmaceutica Sinica B 2024;14(2):836-853
Conventional chemotherapy based on cytotoxic drugs is facing tough challenges recently following the advances of monoclonal antibodies and molecularly targeted drugs. It is critical to inspire new potential to remodel the value of this classical therapeutic strategy. Here, we fabricate bisphosphonate coordination lipid nanogranules (BC-LNPs) and load paclitaxel (PTX) to boost the chemo- and immuno-therapeutic synergism of cytotoxic drugs. Alendronate in BC-LNPs@PTX, a bisphosphonate to block mevalonate metabolism, works as both the structure and drug constituent in nanogranules, where alendronate coordinated with calcium ions to form the particle core. The synergy of alendronate enhances the efficacy of paclitaxel, suppresses tumor metastasis, and alters the cytotoxic mechanism. Differing from the paclitaxel-induced apoptosis, the involvement of alendronate inhibits the mevalonate metabolism, changes the mitochondrial morphology, disturbs the redox homeostasis, and causes the accumulation of mitochondrial ROS and lethal lipid peroxides (LPO). These factors finally trigger the ferroptosis of tumor cells, an immunogenic cell death mode, which remodels the suppressive tumor immune microenvironment and synergizes with immunotherapy. Therefore, by switching paclitaxel-induced apoptosis to mevalonate metabolism-triggered ferroptosis, BC-LNPs@PTX provides new insight into the development of cytotoxic drugs and highlights the potential of metabolism regulation in cancer therapy.
7.Analysis on clinical efficacy and influencing factors based on omadacycline treatment
Yi-Fan CHEN ; Zhou-Hua HOU ; Qin HU ; Yan HUANG ; Xiu-Juan MENG ; Chun-Jiang WANG ; Shao LIU
Chinese Journal of Infection Control 2024;23(9):1106-1113
Objective To explore the clinical efficacy and influencing factors of omadacycline(OMC)in the treat-ment of patients with infectious diseases.Methods Data about hospitalized patients who received OMC monothera-py or combination therapy at Xiangya Hospital of Central South University from January 2022 to December 2023 were analyzed retrospectively.The influencing factors for failure of OMC treatment was analyzed by univariate and multivariate logistic regression analysis.Results A total of 160 patients were included in analysis,with an overall effective treatment rate of 69.4%(n=111).After treatment with OMC,patients in effective group was observed that body temperature improved([36.83±0.52]℃ vs[37.85±0.92]℃,P<0.001),white blood cell count([7.78±4.07]× 109/L vs[10.06±6.49]× 109/L,P<0.001),procalcitonin([0.63±1.19]ng/mL vs[4.43±10.14]ng/mL,P=0.001),C-reactive protein([35.16±37.82]mg/L vs[105.08±99.47]mg/L,P<0.001),and aspartate aminotransferase([50.50±40.04]U/L vs[77.17±91.43]U/L,P=0.004)all decreased signifi-cantly.Only one patient had adverse reactions such as diarrhea,but treatment was not interrupted.Univariate ana-lysis showed that patients in failure treatment group had a higher acute physiology and chronic health evaluation Ⅱ(APACHE Ⅱ)score(17.0[9.5-22.0]vs 12.0[9.0-19.0],P=0.046)and sequential organ failure assessment(SOFA)score(7.0[4.5-10.0]vs 4.0[2.0-9.0],P=0.019).Multivariate analysis showed that end-stage liver disease(OR=77.691,95%CI:5.448-1 107.880,P=0.001),mechanical ventilation(OR=6.686,95%CI:1.628-27.452,P=0.008)and the combination treatment of vancomycin(OR=6.432,95%CI:1.891-21.874,P=0.003)were risk factors for the failure of OMC treatment,while the course of OMC treatment(OR=0.905,95%CI:0.825-0.994,P=0.037)was a protective factor for the effective treatment.Conclusion OMC can be used as an alternative therapy for refractory severe infection,with fewer adverse reaction.End-stage liver disease,mechanical ventilation and combination treatment of vancomycin are risk factors for failure of OMC treatment in in-fected patients.Adequate OMC treatment course can improve patients'clinical outcome,large-scale case studies are needed to confirm the initial conclusion.
8.Synergistic effects of gentiopicroside combined with pabolizumab on photodynamic treatment of breast cancer mice
Jie-Ni FENG ; Chao-Fan GUO ; Hua-Long LIN ; Shao-Fei YUAN
The Chinese Journal of Clinical Pharmacology 2024;40(2):239-243
Objective To study the synergistic effects of gentiopicroside combined with pabolizumab on photodynamic therapy in mice with breast cancer.Methods MCF-7 cells were injected subcutaneously to establish a tumor bearing mouse model of breast cancer and were randomly divided into model group,control group,positive control group,experimental group and combination group,with 10 mice in each group.The control group was intraperitoneally injected with 50 mg·kg-1 of 5-aminolevulinic acid and irradiated with 200 J·cm-2 laser for 20 min,once a week.The positive control group was intraperitoneally injected with 100μg·kg-1 pabolizumab,twice a week,and photodynamic therapy once a week,the experimental group was intragastric given 100 mg·kg-1 gentiopicroside,once a day,and photodynamic therapy once a week,the combined group was intraperitoneally injected with pabolizumab(100 μg·kg-1),twice a week,and gavage of gentiopicroside(100 mg·kg-1)once a day and photodynamic therapy once a week.Five groups of mice were given the drug for 3 weeks.The tumor inhibition rate of each group was compared,and the levels of interleukin(IL)-12,interferon(INF)-γand tumor necrosis factor(TNF)-α were measured by enzyme-linked immunosorbent assay.The levels of B-cell lymphoma-2 associated gene(Bax),B-lymphoblastoma-2 gene(Bcl-2)and vascular endothelial growth factor(VEGF)protein in tumor tissues were determined by Western blot.Results The tumor inhibition rates of control,positive control,experimental and combined groups were(22.38±2.26)%,(42.27±3.21)%,(38.16±2.17)%and(60.24±2.84)%,respectively.The serum IL-12 levels of model,control,positive control,experimental and combined groups were(127.13±1.25),(132.29±2.31),(155.27±1.48),(163.31±2.67)and(185.24±1.71)pg·mL-1;INF-γ levels were(724.16±3.63),(891.12±4.45),(1 043.19±3.85),(1 082.34±4.51)and(1 492.13±6.57)pg·mL-1;TNF-α levels were(83.81±4.52),(65.26±3.77),(41.07±3.85),(43.59±3.94)and(27.12±3.93)pg·mL-1;the relative protein expression levels of Bax were 0.30±0.08,0.47±0.05,0.67±0.11,0.89±0.06 and 1.03±0.10;the relative protein expression levels of Bcl-2 were 0.99±0.04,0.86±0.06,0.71±0.05,0.46±0.06 and 0.31±0.08;the relative protein expression levels of VEGF were 1.06±0.04,0.92±0.03,0.76±0.04,0.49±0.04 and 0.29±0.08.The differences of above indexes between the combined group and the control,positive control group and experimental groups were statistically significant(all P<0.05).Conclusion Gentiopicroside combined with pembrolizumab can significantly enhance the tumor inhibition effect of photodynamic therapy on breast cancer mice,promote the apoptosis of breast cancer cells,and then inhibit the tumor progression of breast cancer mice.
9.Explanation and interpretation of the compilation of neonatal blood transfusion in the national health standard "Guideline for pediatric transfusion".
Rong GUI ; Rong HUANG ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Xin-Yin WU ; Ming-Yan HEI ; Qing-Nan HE
Chinese Journal of Contemporary Pediatrics 2024;26(12):1249-1254
In order to guide clinical blood transfusion practices for pediatric patients, the National Health Commission has released the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Considering the physiological particularities of the neonatal period, blood transfusion practices for neonates are more complex than those for other children, the guidelines include a separate chapter dedicated to neonatal blood transfusion. This paper interprets the background and evidence for the compilation of the neonatal blood transfusion provisions, hoping to aid in the understanding and implementation of the neonatal blood transfusion section of the guidelines.
Humans
;
Infant, Newborn
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic

Result Analysis
Print
Save
E-mail