1.Effects of two intermittent fasting strategies on postprandial lipid metabolism in adults
Manman SHAO ; Xiaohui WEI ; Yuanchao LI ; Mingjing XU ; Tao YING ; Gengsheng HE ; Yuwei LIU
Shanghai Journal of Preventive Medicine 2025;37(1):64-71
ObjectiveTo investigate the effects and potential mechanisms of morning and evening fasting on postprandial lipid responses, a post hoc analysis based on a crossover randomized controlled trial was conducted to assess the effects of different fasting strategies on postprandial lipid metabolism in community residents in Shanghai. MethodsA total of 23 participants took part in a randomized crossover trial involving two intervention days: morning fasting and evening fasting, with a washout period of 6 days between intervention days. Two-way analysis of variance was used to test the differences in total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and the relative expression of circadian clock genes before and after the next meal under fasting. Wilcoxon rank sum tests were used to analyze the different metabolites between the two groups. Principal component analysis and Orthogonal partial least squares-discriminant analysis were conducted to evaluate the ability of metabolites to differentiate between morning fasting and evening fasting and identify the important differential metabolites. After adjusting for age, sex, and BMI, a partial correlation analysis was performed to identify metabolites associated with plasma lipids. In addition, important metabolites associated with plasma lipids were computed by pathway enrichment analysis. ResultsAfter evening fasting intervention, fasting TG level [(0.37±0.29) vs (0.27±0.18)] mmol·L-1, fasting and postprandial change values in TC [(2.74±0.47) vs (2.51±0.27)] mmol·L-1 and LDL-C [(1.32±0.38) vs (0.99±0.27)] mmol·L-1 were significantly lower than those after morning fasting (P<0.05). While, change values of fasting LDL-C [(0.89±0.37) vs (1.14±0.37)] mmol·L-1 and TG [(1.14±0.19) vs (1.28±0.17)] mmol·L-1 were significantly higher than those after morning fasting intervention (P<0.05). After fasting intervention, the relative expression of AMPK, CRY1, CLOCK, MTNR1B, AANAT, and ASMT was correlated with the amount of plasma lipid changes (P<0.05). Specifically, CLOCK and AANAT were upregulated following evening fasting and downregulated after morning fasting. Among the 217 important differential metabolites, 111 were correlated with plasma lipids, and which were primarily enriched in the cysteine and methionine metabolism pathways (P<0.05). ConclusionCompared to morning fasting, evening fasting was more effective in improving postprandial lipid responses, indicating that an evening fasting window during intermittent fasting could be conducive to cardiovascular disease prevention in adults. Meanwhile, it is suggested that morning and evening fasting may affect lipid responses through circadian rhythm oscillations and the cysteine and methionine metabolism pathways.
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
4.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
5.Correction to: Scorpion Venom Heat-Resistant Peptide is Neuroprotective Against Cerebral Ischemia-Reperfusion Injury in Association with the NMDA-MAPK Pathway.
Xu-Gang WANG ; Dan-Dan ZHU ; Na LI ; Yue-Lin HUANG ; Ying-Zi WANG ; Ting ZHANG ; Chen-Mei WANG ; Bin WANG ; Yan PENG ; Bi-Ying GE ; Shao LI ; Jie ZHAO
Neuroscience Bulletin 2025;41(3):549-550
6.Clinical efficacy and safety of intravenous colistin sulfate monotherapy versus combination with nebulized inhalation for pulmonary infections caused by carbapenem-resistant gram-negative bacilli: a multicenter retrospective cohort study.
Danyang PENG ; Fan ZHANG ; Ying LIU ; Yanqiu GAO ; Lanjuan XU ; Xiaohui LI ; Suping GUO ; Lihui WANG ; Lin GUO ; Yonghai FENG ; Chao QIN ; Huaibin HAN ; Xisheng ZHENG ; Faming HE ; Xiaozhao LI ; Bingyu QIN ; Huanzhang SHAO
Chinese Critical Care Medicine 2025;37(9):829-834
OBJECTIVE:
To compare the efficacy and safety of intravenous colistin sulfate combined with nebulized inhalation versus intravenous monotherapy for pulmonary infections caused by carbapenem-resistant organism (CRO).
METHODS:
A multicenter retrospective cohort study was conducted. Clinical data were collected from patients admitted to the intensive care unit (ICU) of 10 tertiary class-A hospitals in Henan Province between July 2021 and May 2023, who received colistin sulfate for CRO pulmonary infections. Data included baseline characteristics, inflammatory markers [white blood cell count (WBC), neutrophil count (NEU), procalcitonin (PCT), C-reactive protein (CRP)], renal function indicators [serum creatinine (SCr), blood urea nitrogen (BUN)], life support measures, anti-infection regimens, clinical efficacy, microbiological clearance rate, and prognostic outcomes. Patients were divided into two groups: intravenous group (colistin sulfate monotherapy via intravenous infusion) and combination group ((intravenous infusion combined with nebulized inhalation of colistin sulfate). Changes in parameters before and after treatment were analyzed.
RESULTS:
A total of 137 patients with CRO pulmonary infections were enrolled, including 89 in the intravenous group and 48 in the combination group. Baseline characteristics, life support measures, daily colistin dose, and combination regimens (most commonly colistin sulfate plus carbapenems in both groups) showed no significant differences between two groups. The combination group exhibited higher clinical efficacy [77.1% (37/48) vs. 59.6% (52/89)] and microbiological clearance rate [60.4% (29/48) vs. 39.3% (35/89)], both P < 0.05. Pre-treatment inflammatory and renal parameters showed no significant differences between two groups. Post-treatment, the combination group showed significantly lower WBC and CRP [WBC (×109/L): 8.2±0.5 vs. 10.9±0.6, CRP (mg/L): 14.0 (5.7, 26.6) vs. 52.1 (24.4, 109.6), both P < 0.05], whereas NEU, PCT, SCr, and BUN levels showed no significant between two groups. ICU length of stay was shorter in the combination group [days: 16 (10, 25) vs. 21 (14, 29), P < 0.05], although mechanical ventilation duration and total hospitalization showed no significant differences between two groups.
CONCLUSIONS
Intravenous colistin sulfate combined with nebulized inhalation improved clinical efficacy and microbiological clearance in CRO pulmonary infections with an acceptable safety profile.
Humans
;
Colistin/therapeutic use*
;
Retrospective Studies
;
Administration, Inhalation
;
Anti-Bacterial Agents/therapeutic use*
;
Carbapenems/pharmacology*
;
Male
;
Female
;
Middle Aged
;
Gram-Negative Bacteria/drug effects*
;
Aged
;
Treatment Outcome
;
Respiratory Tract Infections/drug therapy*
7.A reporter gene assay for determining antibody-dependent cell-mediated phagocytosis activity of HER2-targeted antibody drug conjugate.
Ying CHEN ; Can WANG ; Qin ZHAO ; Mingren WANG ; Tiantian LI ; Shanshan DONG ; Hong SHAO ; Weidong XU
Chinese Journal of Biotechnology 2025;41(8):3122-3130
To develop a method for determining the antibody-dependent cell-mediated phagocytosis (ADCP) activity of human epidermal growth factor receptor 2 (HER2)-targeted antibody drug conjugate (ADC) based on the reporter gene assay, we established an ADCP activity assay with Jurkat/NFAT/FcγRIIa cells as the effector cells and BT474 as the target cells. Then, the target cell density, the ratio of effector to target cells, the target cell adhesion time, the incubation time for drug administration, and the induction time after adding effector cells were optimized by the method of design of experiment (DOE). The method showed a significant dose-response relationship, which was complied with the four-parameter equation: y=(A-D)/[1+(x/C)B]+D. The durability ranges of the target cell density, the ratio of effector to target cells, the target cell adhesion time, the incubation time for drug administration, and the induction time after adding effector cells were (2.5-4.0)×105 cells/mL, 3-5, 1.0-2.0 h, 0 h, and 5.0-6.0 h, respectively. The results of the methodological validation showed that the linear equation was y=1.106 8x-0.011 6, r=0.969 2. The established method showed the relative accuracy ranging from -6.59% to 2.98% and the geometric coefficient of variation less than 11% in the intermediate precision test. Furthermore, the method was target-specific. The method was then applied to the determination of ADCP activity of HER2-targeted ADC, demonstrating the result of (103.5±5.7)%. We developed a reporter gene assay for determining the ADCP activity of HER2-targeted ADC and the assay demonstrated high accuracy and good reproducibility, which proposes a highly efficient and approache for evaluating ADCP effect of this HER2-targeted ADC, and also provides a referable technique for characterizing the Fc effector functions of ADCs with diverse targets.
Humans
;
Receptor, ErbB-2/immunology*
;
Phagocytosis/drug effects*
;
Immunoconjugates/immunology*
;
Genes, Reporter
;
Antibody-Dependent Cell Cytotoxicity
;
Jurkat Cells
8.Efficacy,metabolic characteristics,safety and immunogenicity of AK-HER2 compared with reference trastuzumab in patients with metastatic HER2-positive breast cancer:a multicenter,randomized,double-blind phase Ⅲ equivalence trial
Yang LUO ; Tao SUN ; Zhimin SHAO ; Jiuwei CUI ; Yueyin PAN ; Qingyuan ZHANG ; Ying CHENG ; Huiping LI ; Yan YANG ; Changsheng YE ; Guohua YU ; Jingfen WANG ; Yunjiang LIU ; Xinlan LIU ; Yuhong ZHOU ; Yuju BAI ; Yuanting GU ; Xiaojia WANG ; Binghe XU ; Lihua SONG
China Oncology 2024;34(2):161-175
Background and purpose:For patients with human epidermal growth factor receptor 2(HER2)-positive metastatic breast cancer,trastuzumab treatment can prolong the overall survival and significantly improve the prognosis of patients.However,the reference original research trastuzumab(Herceptin?)is more expensive.Biosimilars have comparable efficacy and safety profiles while increasing patient access to treatment.This clinical trial aimed to evaluate the efficacy,pharmacokinetics,safety and immunogenicity of the trastuzumab biosimilar AK-HER2 compared to trastuzumab(Herceptin?)in patients with HER2-positive metastatic breast cancer.Methods:This multi-center,randomised,double-blind phase Ⅲ clinical trial was conducted in 43 subcenters in China.This study complied with the research protocol,the ethical principles stated in the Declaration of Helsinki and the quality management standards for drug clinical trials.It was approved by the hospital's medical ethics committee.The clinical trial registration agency is the State Food and Drug Administration(clinical trial approval number:2015L04224;clinical trial registration number:CTR20170516).Written informed consent was obtained from subjects before enrollment.Enrolled patients were randomly assigned to the AK-HER2 group and the control group,respectively receiving AK-HER2 or trastuzumab(initial loading dose 8 mg/kg,maintenance dose 6 mg/kg,every 3 weeks as a treatment cycle,total treatment time is 16 cycles)in combination with docetaxel(75 mg/m2,treatment duration is at least 9 cycles).The primary endpoint of this clinical trial was the objective response rate(ORR9)between the AK-HER2 group and the control group in the 9th cycle.Secondary efficacy endpoints included ORR16,disease control rate(DCR),clinical benefit rate(CBR),progression-free survival(PFS)and 1-year survival rate.In this study,100 subjects(AK-HER2 group to control group=1:1)were randomly selected for blood sample collection after the 6th cycle of medication,The collection time points were 45 minutes after infusion(the end of administration),4,8,24,72,120,168,336,and 504 hours after the end of administration.After collection,blood samples were analyzed by PK parameter set(PKPS).Other evaluation parameters included safety and immunogenicity assessment.Results:A total of 550 patients with HER2-positive metastatic breast cancer were enrolled in this clinical trial between Sep.2017 and Mar.2021.In the AK-HER2 group(n=237),129 subjects in the experimental group achieved complete response(CR)or partial response(PR),and the ORR9 was 54.4%.There were 134 subjects in the control group(n=241)who achieved CR or PR,and the ORR9 was 55.6%.The ORR9 ratio between the AK-HER2 group and the control group was 97.9%[90%confidence interval(CI):85.4%-112.2%,P=0.784],which was not statistically significant.In all secondary efficacy endpoints,no statistically significant differences were observed between the two groups.We conducted a mean ratio analysis of pharmacokinetics(PK)parameters between the AK-HER2 group and the control group,and the results suggested that the pharmacokinetic characteristics of the two drugs are similar.The incidence of treatment emergent adverse event(TEAE)leading to drug reduction or suspension during trastuzumab treatment was 3.6%(10 cases)in the AK-HER2 group and 8.1%(22 cases)in the control group.There was statistically significant difference between the two groups(P=0.027).The incidence rate was significantly lower in the AK-HER2 group than in the control group,and there was no statistically significant difference among the other groups.The differences in the positive rates of anti-drug antibodies(ADA)and neutralizing antibodies(NAB)between groups were of no statistical significance(P=0.385 and P=0.752).Conclusion:In patients with HER2-positive metastatic breast cancer,AK-HER2 was comparable to the trastuzumab(Herceptin?)in terms of drug efficacy,pharmacokinetics,safety and immunogenicity.
9.Design, synthesis and anti-tumor activity evaluation of quinoline derivatives as histone deacetylase 8 inhibitors
Yi ZHOU ; Wen-qing SHAO ; Xin-ying YANG ; Xu-ben HOU ; Hao FANG
Acta Pharmaceutica Sinica 2024;59(4):979-986
As a member of class I histone deacetylase (HDACs), HDAC8 is an important anticancer drug target. Based on our previously developed pharmacophore model for the HDAC8 inhibitor, we designed and synthesized 13 quinoline acid derivatives as new HDAC8 inhibitors. Among them, the compound SDFZ-E2 and SDFZ-E3 exhibited good HDAC8 inhibitory activities and isoform selectivity. In cell experiments, the target compounds SDFZ-E2 and SDFZ-E3 showed better antiproliferation activities than the known HDAC8 selective inhibitor PCI-34051. In addition, the proposed binding mode of SDFZ-E2 was investigated using molecular docking and molecular dynamics simulation. This work is a new attempt to develop HDAC8 selective inhibitor using quinoline as the scaffold, and the active compounds could serve as lead compounds for further structural optimization.
10.The experience on the construction of the cluster prevention and control system for COVID-19 infection in designated hospitals during the period of "Category B infectious disease treated as Category A"
Wanjie YANG ; Xianduo LIU ; Ximo WANG ; Weiguo XU ; Lei ZHANG ; Qiang FU ; Jiming YANG ; Jing QIAN ; Fuyu ZHANG ; Li TIAN ; Wenlong ZHANG ; Yu ZHANG ; Zheng CHEN ; Shifeng SHAO ; Xiang WANG ; Li GENG ; Yi REN ; Ying WANG ; Lixia SHI ; Zhen WAN ; Yi XIE ; Yuanyuan LIU ; Weili YU ; Jing HAN ; Li LIU ; Huan ZHU ; Zijiang YU ; Hongyang LIU ; Shimei WANG
Chinese Critical Care Medicine 2024;36(2):195-201
The COVID-19 epidemic has spread to the whole world for three years and has had a serious impact on human life, health and economic activities. China's epidemic prevention and control has gone through the following stages: emergency unconventional stage, emergency normalization stage, and the transitional stage from the emergency normalization to the "Category B infectious disease treated as Category B" normalization, and achieved a major and decisive victory. The designated hospitals for prevention and control of COVID-19 epidemic in Tianjin has successfully completed its tasks in all stages of epidemic prevention and control, and has accumulated valuable experience. This article summarizes the experience of constructing a hospital infection prevention and control system during the "Category B infectious disease treated as Category A" period in designated hospital. The experience is summarized as the "Cluster" hospital infection prevention and control system, namely "three rings" outside, middle and inside, "three districts" of green, orange and red, "three things" before, during and after the event, "two-day pre-purification" and "two-director system", and "one zone" management. In emergency situations, we adopt a simplified version of the cluster hospital infection prevention and control system. In emergency situations, a simplified version of the "Cluster" hospital infection prevention and control system can be adopted. This system has the following characteristics: firstly, the system emphasizes the characteristics of "cluster" and the overall management of key measures to avoid any shortcomings. The second, it emphasizes the transformation of infection control concepts to maximize the safety of medical services through infection control. The third, it emphasizes the optimization of the process. The prevention and control measures should be comprehensive and focused, while also preventing excessive use. The measures emphasize the use of the least resources to achieve the best infection control effect. The fourth, it emphasizes the quality control work of infection control, pays attention to the importance of the process, and advocates the concept of "system slimming, process fattening". Fifthly, it emphasizes that the future development depends on artificial intelligence, in order to improve the quality and efficiency of prevention and control to the greatest extent. Sixth, hospitals need to strengthen continuous training and retraining. We utilize diverse training methods, including artificial intelligence, to ensure that infection control policies and procedures are simple. We have established an evaluation and feedback mechanism to ensure that medical personnel are in an emergency state at all times.

Result Analysis
Print
Save
E-mail