1.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
4.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
5.Effects of inhalation of polyhexamethylene guanidine disinfectant aerosol on immune organs and immune cells in mice
Zhengli YANG ; Naimin SHAO ; Yu DING ; Jing XU ; Junli LIU ; Xi LIU ; Kelei QIAN ; Xinyu HONG
Journal of Environmental and Occupational Medicine 2024;41(8):855-860
Background The respiratory toxicity of inhaled polyhexamethylene guanidine (PHMG) has been extensively studied since the humidifier disinfectant incident. However, the impacts of inhalation of PHMG on the immune system are not comprehensively studied yet. Objective To explore the effects of inhalation of PHMG disinfectant aerosol on major immune organs and immune cells in mice. Methods Thirty male C57BL/6J mice (6-8 weeks old) were randomly divided into three groups: control, low-dose (0.1 mg·m−3 PHMG), and high-dose (1.0 mg·m−3 PHMG), with ten mice in each group. The mice were administered by oral-nasal inhalation of PHMG aerosol for 4 h per day, 5 d per week for 4 weeks consecutively. After designed treatment, venous blood was collected from the inner canthus of the eyes of mice and peripheral hematological indicators were measured with a blood analyzer. Then the mice were sacrificed by cervical dislocation and the lung, thymus, spleen, and femur were isolated. Lung, thymus, and spleen were weighed and organ coefficients were calculated, and single cell suspensions of thymus, spleen, and bone marrow were prepared to analyze lymphocytes phenotypes and proportions by flow cytometry. Results The body weight of mice in the high-dose group was lower than that of mice in the control group (P<0.01) from the 7th day of inhalation, and decreased by 15.74% compared with that of mice in the control group at the end of inhalation (P<0.01). The lung coefficients of both the low-dose and high-dose groups were higher than that of the control group (P<0.01), the thymus coefficient of mice in the high-dose group was lower than that of the control group (P<0.05), but the spleen coefficient did not change significantly (P>0.05). Leukocyte count [(1.49±0.22)×109·L−1], lymphocyte count [(0.96±0.36)×109·L−1] and its proportion [(63.13±14.96)%] in the peripheral blood of mice in the high-dose group were lower than those in the control group [(2.69±0.25)×109·L−1, (2.33±0.28)×109·L−1, and (86.23±3.40)%, respectively] (P<0.01), whereas red blood cell count [(12.32±0.46)×1012·L−1], hemoglobin count [(175.25±4.65) g·L−1], and hematocrit [(53.55±0.70)%] in the peripheral blood of mice in the high-dose group were higher than those in the control group [(11.11±0.37)×1012·L−1, (160.67±4.04) g·L−1, and (45.10±9.75)%, respectively] (P<0.05). Compared with the control group, the proportion of CD4+ CD8+ double-positive T cells decreased (P<0.05), the proportions of CD4+ T cells and CD8+ T cells increased (P<0.05), and the amounts of CD8+, CD4+ CD8+, CD4+, and CD4- CD8- cells decreased (P<0.05) in the thymus of mice of the high-dose group, the proportion of CD4+ T cells in the spleen of the high-dose group increased (P<0.05), the proportions and amounts of T cells, CD4+ T cells, and CD8+ T cells in the bone marrow of the high-dose group increased (P<0.05). Conclusion Inhalation of PHMG may cause thymic atrophy, disrupt T-lymphocyte development, and lead to an imbalance in the number of immune cells in the bone marrow, peripheral blood, and spleen, suggesting that inhalation of PHMG induces immune dysfunction.
6.Research advances on the mechanism of Wnt/β-catenin signaling pathway in body surface wound healing.
Qian WU ; Xiao Yu TAN ; Yi Jia WANG ; Shao Wen CHENG ; Hong Wang CUI ; Jiang Ling YAO
Chinese Journal of Burns 2023;39(2):190-195
Wound healing is a slow and complex biological process, including inflammatory reaction, cell proliferation, cell differentiation, cell migration, angiogenesis, extracellular matrix deposition, tissue remodeling, and so on. Wnt signaling pathway can be divided into classical pathway and non-classical pathway. Wnt classical pathway, also known as Wnt/β-catenin signaling pathway, plays an important role in cell differentiation, cell migration, and maintenance of tissue homeostasis. Many inflammatory factors and growth factors are involved in the upstream regulation of this pathway. The activation of Wnt/β-catenin signaling pathway plays an important role in the occurrence, development, regeneration, repair and related treatment of skin wounds. This article review the relationship between Wnt/β-catenin signaling pathway and wound healing, meanwhile summarizes its effects on important processes of wound healing, such as inflammation, cell proliferation, angiogenesis, hair follicle regeneration, and skin fibrosis, as well as the role of inhibitors of Wnt signaling pathway in wound healing.
Humans
;
Wnt Signaling Pathway
;
Cell Differentiation
;
Cell Movement
;
Cell Proliferation
;
Inflammation
;
Wound Healing
7.Expert consensus on the prevention and treatment of adverse reactions in subcutaneous immunotherapy(2023, Chongqing).
Yu Cheng YANG ; Yang SHEN ; Xiang Dong WANG ; Yan JIANG ; Qian Hui QIU ; Jian LI ; Shao Qing YU ; Xia KE ; Feng LIU ; Yuan Teng XU ; Hong Fei LOU ; Hong Tian WANG ; Guo Dong YU ; Rui XU ; Juan MENG ; Cui Da MENG ; Na SUN ; Jian Jun CHEN ; Ming ZENG ; Zhi Hai XIE ; Yue Qi SUN ; Jun TANG ; Ke Qing ZHAO ; Wei Tian ZHANG ; Zhao Hui SHI ; Cheng Li XU ; Yan Li YANG ; Mei Ping LU ; Hui Ping YE ; Xin WEI ; Bin SUN ; Yun Fang AN ; Ya Nan SUN ; Yu Rong GU ; Tian Hong ZHANG ; Luo BA ; Qin Tai YANG ; Jing YE ; Yu XU ; Hua Bin LI
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(7):643-656
8.Research progress of echocardiography in the evaluation of left ventricular systolic function
Zimian CHEN ; Guangqiang CHEN ; Qian LI ; Jun SHAO ; Hong SHEN
Chinese Journal of Primary Medicine and Pharmacy 2022;29(11):1752-1756
The judgment of left ventricular systolic dysfunction is of great significance for the diagnosis of heart disease, risk evaluation, and follow-ups of patients with heart disease. Evaluation of left ventricular systolic function is the most commonly used index in echocardiography. At present, the echocardiographic measurement of left ventricular function has changed from linear measurement and two-dimensional echocardiography to local and global strain analysis and three-dimensional echocardiography. Even if examination method is very superior and automatic, evaluating left ventricular systolic function is extremely challenging. This paper reviews the most widely used echocardiography, evaluates left ventricular systolic function in adults and children, and discusses its advantages, disadvantages and the research progress.
9.Research progress on scleral remodeling and scleral intervention in ocular diseases
Xiao-Jing WANG ; Chen QIU ; Shao-Hong QIAN
International Eye Science 2022;22(12):2010-2015
Sclera is an important tissue to maintain the structure and function of eyes.Its unique biomechanical properties influence the occurrence and development of ocular diseases. The biomechanical properties of sclera are mainly determined by extracellular matrix(ECM), which contains different types of collagen fibers, proteoglycan and other substances. In many ocular diseases, the change of the content and arrangement of these scleral ingredients as well as scleral biomechanics can be called scleral remodeling. In recent years, studies have shown that the scleral remodeling is a complex and dynamic process in many ocular diseases,with many key molecules and signaling pathways participating and regulating. Those key molecules and signaling pathways influencing the scleral remodeling of ocular diseases are reviewed, and the availability of scleral intervention in the treatment of ocular diseases is explored.
10.Effect and influence factors of cardiopulmonary resuscitation in children with congenital heart disease in pediatric intensive care unit.
Gang LIU ; Jian Ping CHU ; Jian Li CHEN ; Su Yun QIAN ; Dan Qun JIN ; Xiu Lan LU ; Mei Xian XU ; Yi Bing CHENG ; Zheng Yun SUN ; Hong Jun MIAO ; Jun LI ; Sheng Ying DONG ; Xin DING ; Ying WANG ; Qing CHEN ; Yuan Yuan DUAN ; Jiao Tian HUANG ; Yan Mei GUO ; Xiao Na SHI ; Jun SU ; Yi YIN ; Xiao Wei XIN ; Shao Dong ZHAO ; Zi Xuan LOU ; Jing Hui JIANG ; Jian Sheng ZENG
Chinese Journal of Pediatrics 2022;60(3):197-202
Objective: To investigate the prognostic factors of children with congenital heart disease (CHD) who had undergone cardiopulmonary resuscitation (CPR) in pediatric intensive care unit (PICU) in China. Methods: From November 2017 to October 2018, this retrospective multi-center study was conducted in 11 hospitals in China. It contained data from 281 cases who had undergone CPR and all of the subjects were divided into CHD group and non-CHD group. The general condition, duration of CPR, epinephrine doses during resuscitation, recovery of spontaneous circulation (ROSC), discharge survival rate and pediatric cerebral performance category in viable children at discharge were compared. According to whether malignant arrhythmia is the direct cause of cardiopulmonary arrest or not, children in CHD and non-CHD groups were divided into 2 subgroups: arrhythmia and non-arrhythmia, and the ROSC and survival rate to discharge were compared. Data in both groups were analyzed by t-test, chi-square analysis or ANOVA, and logistic regression were used to analyze the prognostic factors for ROSC and survival to discharge after cardiac arrest (CA). Results: The incidence of CA in PICU was 3.2% (372/11 588), and the implementation rate of CPR was 75.5% (281/372). There were 144 males and 137 females with median age of 32.8 (5.6, 42.7) months in all 281 CPA cases who received CPR. CHD group had 56 cases while non-CHD had 225 cases, with the percentage of 19.9% (56/281) and 80.1% (225/281) respectively. The proportion of female in CHD group was 60.7% (34/56) which was higher than that in non-CHD group (45.8%, 103/225) (χ2=4.00, P=0.045). There were no differences in ROSC and rate of survival to discharge between the two groups (P>0.05). The ROSC rate of children with arthythmid in CHD group was 70.0% (28/40), higher than 6/16 for non-arrhythmic children (χ2=5.06, P=0.024). At discharge, the pediatric cerebral performance category scores (1-3 scores) of CHD and non-CHD child were 50.9% (26/51) and 44.9% (92/205) respectively. Logistic regression analysis indicated that the independent prognostic factors of ROSC and survival to discharge in children with CHD were CPR duration (odds ratio (OR)=0.95, 0.97; 95%CI: 0.92~0.97, 0.95~0.99; both P<0.05) and epinephrine dosage (OR=0.87 and 0.79, 95%CI: 0.76-1.00 and 0.69-0.89, respectively; both P<0.05). Conclusions: There is no difference between CHD and non-CHD children in ROSC and survival rate of survival to discharge was low. The epinephrine dosage and the duration of CPR are related to the ROSC and survival to discharge of children with CHD.
Cardiopulmonary Resuscitation
;
Child
;
Child, Preschool
;
Female
;
Heart Arrest/therapy*
;
Heart Defects, Congenital/therapy*
;
Humans
;
Intensive Care Units, Pediatric
;
Male
;
Retrospective Studies

Result Analysis
Print
Save
E-mail