1.Application of low-depth whole genome sequencing for copy number variation analysis in children with disorders of sex development.
Junke XIA ; Yaqin HOU ; Peng DAI ; Zhenhua ZHAO ; Chen CHEN ; Xiangdong KONG
Chinese Journal of Medical Genetics 2023;40(2):195-201
OBJECTIVE:
To assess the value of copy number variation sequencing (CNV-seq) for the diagnosis of children with disorders of sex development (DSD).
METHODS:
Five children with DSD who presented at the First Affiliated Hospital of Zhengzhou University from October 2019 to October 2020 were enrolled. In addition to chromosomal karyotyping, whole exome sequencing (WES), SRY gene testing, and CNV-seq were also carried out.
RESULTS:
Child 1 and 2 had a social gender of female, whilst their karyotypes were both 46,XY. No pathogenic variant was identified by WES. The results of CNV-seq were 46,XY,+Y (1.4) and 46,XY,-Y (0.75), respectively. The remaining three children have all carried an abnormal chromosome Y. Based on the results of CNV-seq, their karyotypes were respectively verified as 45,X[60]/46,X,del(Y)(q11.221)[40], 45,X,16qh+[76]/46,X,del(Y)(q11.222),16qh+[24], and 45,X[75]/46,XY[25].
CONCLUSION
CNV-seq may be used to verify the CNVs on the Y chromosome among children with DSD and identify the abnormal chromosome in those with 45,X/46,XY. Above results have provided a basis for the clinical diagnosis and treatment of such children.
Humans
;
Child
;
Female
;
DNA Copy Number Variations
;
Chromosome Aberrations
;
Karyotyping
;
Exome Sequencing
;
Disorders of Sex Development/genetics*
2.Application of fluorescence in situ hybridization combined with chromosomal karyotyping analysis in children with disorders of sex development due to sex chromosome abnormalities.
Gaowei WANG ; Jin WANG ; Zhenhua ZHANG ; Rui LI ; Linfei LI ; Dongxiao LI ; Wancun ZHANG ; Yaodong ZHANG ; Meiye WANG
Chinese Journal of Medical Genetics 2023;40(8):947-953
OBJECTIVE:
To retrospectively analyze sex chromosomal abnormalities and clinical manifestations of children with disorders of sex development (DSD).
METHODS:
A total of 14 857 children with clinical features of DSD including short stature, cryptorchidism, hypospadia, buried penis and developmental delay were recruited from Zhengzhou Children's Hospital from January 2013 to March 2022. Fluorescence in situ hybridization (FISH) and chromosomal karyotyping were carried out for such children.
RESULTS:
In total 423 children were found to harbor sex chromosome abnormalities, which has yielded a detection rate of 2.85%. There were 327 cases (77.30%) with Turner syndrome and a 45,X karyotype or its mosaicism. Among these, 325 were females with short stature as the main clinical manifestation, 2 were males with short stature, cryptorchidism and hypospadia as the main manifestations. Sixty-two children (14.66%) had a 47,XXY karyotype or its mosaicism, and showed characteristics of Klinefelter syndrome (KS) including cryptorchidism, buried penis and hypospadia. Nineteen cases (4.49%) had sex chromosome mosaicisms (XO/XY), which included 11 females with short stature, 8 males with hypospadia, and 6 cases with cryptorchidism, buried penis, testicular torsion and hypospadia. The remainder 15 cases (3.55%) included 9 children with a XYY karyotype or mosaicisms, with main clinical manifestations including cryptorchidisms and hypospadia, 4 children with a 47,XXX karyotype and clinical manifestations including short stature and labial adhesion, 1 child with a 46,XX/46,XY karyotype and clinical manifestations including micropenis, hypospadia, syndactyly and polydactyly, and 1 case with XXXX syndrome and clinical manifestations including growth retardation.
CONCLUSION
Among children with DSD due to sex chromosomal abnormalities, sex chromosome characteristics consistent with Turner syndrome was most common, among which mosaicism (XO/XX) was the commonest. In terms of clinical manifestations, the females mainly featured short stature, while males mainly featured external genital abnormalities. Early diagnosis and treatment are particularly important for improving the quality of life in such children.
Humans
;
Male
;
Female
;
Turner Syndrome/genetics*
;
In Situ Hybridization, Fluorescence
;
Cryptorchidism
;
Hypospadias
;
Retrospective Studies
;
Quality of Life
;
Sex Chromosome Aberrations
;
Karyotyping
;
Mosaicism
;
Disorders of Sex Development/genetics*
3.Genetic analysis of three children with disorders of sex development caused by structural rearrangements of Y chromosome.
Hongying WANG ; Linqi CHEN ; Yuanyuan CHEN ; Yiping SHEN ; Li LI ; Xuejun SHAO ; Haibo LI
Chinese Journal of Medical Genetics 2020;37(11):1226-1232
OBJECTIVE:
To explore the genetic basis of three children with disorders of sex development (DSD) in association with rare Y chromosome rearrangements.
METHODS:
The three children, who all featured short stature and DSD, were subjected to G banding chromosomal karyotyping, multiplex PCR for Y chromosomal microdeletion, sequencing of the whole SRY gene, SNP-array analysis for genomic copy number variations, and fluorescence in situ hybridization (FISH).
RESULTS:
The combined analysis revealed chromosomal abnormalities in all of the three children, including 46,X,t(X;Y)(p22.3;q11.2) in case 1, mos 45,X,der(7)pus dic(Y:7)(p11.3p22)del(7)(p21.2p21.3) del(7)(p12.3p14.3) [56]/45,X [44] in case 2, and mos 45,X [50]/46,X,idic(Y)(q11.22) [42]/47,X,idem×2 [4]/47,XYY [2] in case 3.
CONCLUSION
Combined use of genetic techniques can delineate complex rearrangements involving Y chromosome in patients featuring short stature and DSD. Above findings have enabled molecular diagnosis and genetic counseling for the patients.
Child
;
Chromosome Banding
;
Chromosomes, Human, Y/genetics*
;
DNA Copy Number Variations
;
Humans
;
In Situ Hybridization, Fluorescence
;
Male
;
Polymorphism, Single Nucleotide
;
Sex Chromosome Aberrations
;
Sex Chromosome Disorders of Sex Development/genetics*
4.Genetic analysis of a case of 46, XX, SRY- male syndrome.
National Journal of Andrology 2018;24(5):431-435
ObjectiveTo identify the etiology of chromosome abnormality in an infertile man and analyze the correlation between the genotype and phenotype.
METHODSWe analyzed the karyotype of an infertile male using the routine G-banding technique and then the chromosome abnormality of the patient by Illumina Human CytoSNP-12 Beadchip array.
RESULTSNegative results were found in the examination of the sex-determining region Y (SRY) gene and the STR locus in the AZF zone of the patient. The karyotype of the patient was 46, XX. SNP array showed a 1.05 Mb 19p12 duplication and a 0.93 Mb Xq27.1 duplication.
CONCLUSIONSThe patient was confirmed as a case of 46,XX male syndrome. The increased copies of the FGF13 gene may be the major causes of abnormal sex determination and testis development.
46, XX Testicular Disorders of Sex Development ; diagnosis ; genetics ; Chromosome Aberrations ; Chromosome Banding ; Genetic Testing ; Humans ; Infertility, Male ; genetics ; Karyotype ; Karyotyping ; Male ; Phenotype ; Sex-Determining Region Y Protein ; genetics
5.Familial fragile X syndrome: A pedigree analysis.
Yan-Wei SHA ; Lu DING ; Zhi-Yong JI ; Li-Bin MEI ; Ping LI ; Zheng LI
National Journal of Andrology 2016;22(9):797-804
ObjectiveTo investigate the clinical (including reproductive) manifestations and genetic characteristics of familial fragile X syndrome (FXS).
METHODSWe collected the clinical data about a case of familial FXS by inquiry, testicular ultrasonography, semen analysis, determination of sex hormone levels, and examinations of the peripheral blood karyotype and Y chromosome microdeletions. Using Southern blot hybridization, we measured the size of the CGG triple repeat sequence of the fragile X mental retardation-1 (FMR1) gene and determined its mutation type of the pedigree members with a genetic map of the FXS pedigree.
RESULTSAmong the 34 members of 4 generations in the pedigree, 3 males and 1 female (11.76%) carried full mutation and 9 females (26.47%) premutation of the FMR1 gene. Two of the males with full FMR1 mutation, including the proband showed a larger testis volume (>30 ml) and a higher sperm concentration (>250 ×10⁶/ml), with a mean sperm motility of 50.5%, a mean morphologically normal sperm rate of 17.5%, an average sperm nuclear DNA fragmentation index (DFI) of 18.5%, a low level of testosterone, normal karyotype in the peripheral blood, and integrity of the azoospermia factor (AZF) region in the Y chromosome. One of the second-generation females carrying FMR1 premutation was diagnosed with premature ovarian failure and another 3 with uterine myoma.
CONCLUSIONSSome of the FXS males in the pedigree may present macroorchidism and polyzoospermia but with normal semen parameters. In the intergenerational transmission, premutation might extend to full mutation, with even higher risks of transmission and extension of mutation in males, especially in those with >80 CGG triple repeat sequences. Therefore, it is recommended that the couples wishing for childbearing receive genetic testing, clinical guidance, and genetic counseling before pregnancy and, if necessary, prenatal diagnosis and preimplantation genetic diagnosis.
Chromosome Deletion ; Chromosomes, Human, Y ; genetics ; DNA Fragmentation ; Female ; Fragile X Mental Retardation Protein ; genetics ; Fragile X Syndrome ; genetics ; Genetic Testing ; Humans ; Infertility, Male ; genetics ; Karyotyping ; Male ; Mutation ; Organ Size ; Pedigree ; Pregnancy ; Preimplantation Diagnosis ; Risk ; Sex Chromosome Aberrations ; Sex Chromosome Disorders of Sex Development ; genetics ; Sperm Count ; Testis ; diagnostic imaging ; pathology
6.Genetic analysis for 2 females carrying idic(Y)(p) and with sex development disorders.
Yanan ZHANG ; Hua WANG ; Zhengjun JIA ; Jiancheng HU ; Wanglong CAO ; Yueqiu TAN
Chinese Journal of Medical Genetics 2016;33(3):335-339
OBJECTIVETo investigate the phenotype-genotype association of isodicentromere Y chromosome by analysis of two female patients carrying the chromosome with sexual development disorders.
METHODSThe karyotypes of the two patients were determined by application of conventional G banding of peripheral blood samples and fluorescence in situ hybridization (FISH). PCR was applied to detect the presence of SRY gene.
RESULTSConventional karyotype analysis showed case 1 to be a mosaic: mos.45,X[38]/46,X,+mar[151]/47,XY,+mar[5]/47,X,+mar × 2[2]/46,XY[4], FISH showed that 12 different cell lines were presented in the karyotype of case 1 and partial cell lines with SRY gene, the marker is an isodicentromere Y chromosome [idic(Y)(p)]. No mutation was found in the SRY gene. The karyotype of case 2 was mos.45,X[25]/46,X,+mar[35]. FISH showed the marker to be an idic(Y)(p) without the SRY gene.
CONCLUSIONThe karyotype of patients carrying idic(Y)(p) seems unstable, and female patients have the characteristics of short stature and secondary sexual hypoplasia. Karyotype analysis combined with FISH analysis can accurately determine the breakpoint of idic(Y) and identify the types of complex mosaic, which may facilitate genetic counseling and prognosis.
Adolescent ; Child ; Chromosomes, Human, Y ; Disorders of Sex Development ; genetics ; Female ; Humans ; Karyotype ; Sex Chromosome Aberrations ; Sex-Determining Region Y Protein ; genetics
7.Establishment of a screening method for AZF microdeletions by capillary technology and a clinical trial.
Tianwen HE ; Hui ZHAO ; Xin ZHAO ; Jian LU ; Yichun ZHENG ; Changbin ZHANG ; Aihua YIN
Chinese Journal of Medical Genetics 2016;33(4):550-554
OBJECTIVETo establish an accurate, fast and simple screening method for AZF microdeletions using capillary technology and use it for clinical testing.
METHODSFor each pair of primers, the 5' end of either forward or reverse primer was labeled with a FAM, JOE or TAMRA fluorescence dyes to establish multiplex quantitative fluorescence PCR systems for the establishment of a screening method of Y chromosome AZF microdeletions by capillary technology. The detection of Y chromosome AZF microdeletion was carried out on 725 cases of non-obstructive azoospermia, oligospermia or asthenospermia.
RESULTSA screening method for Y chromosome AZF microdeletions using capillary technology was established. Thirty eight cases of AZF microdeletions were found among 725 cases of non-obstructive azoospermia, oligospermia or asthenospermia, which gave a deletion rate of 5.24%. Y chromosomal microdeletions were found in 8.62% of the azoospermia group, 6.75% of the oligozoospermic group, and 2.23% of the asthenospermia group.
CONCLUSIONAn accurate, fast and simple screening method of Y chromosome AZF microdeletions by capillary technology has been established, which may have an important clinical value.
Adult ; Azoospermia ; genetics ; Capillary Action ; Chromosome Deletion ; Chromosomes, Human, Y ; Humans ; Infertility, Male ; Male ; Multiplex Polymerase Chain Reaction ; Sex Chromosome Aberrations ; Sex Chromosome Disorders of Sex Development ; diagnosis
8.Clinical characteristics, cytogenetic and molecular findings in patients with disorders of sex development.
Li TIAN ; Ming CHEN ; Jian-hong PENG ; Jian-wu ZHANG ; Li LI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(1):81-86
The clinical characteristics of patients with disorders of sex development (DSD), and the diagnostic values of classic cytogenetic and molecular genetic assays for DSD were investigated. In the enrolled 56 cases, there were 9 cases of 46,XY DSD, 6 cases of Turner syndrome (TS), one case of Super female syndrome, 25 cases of Klinefelter syndrome, 14 cases of 46,XX DSD, and one case of autosomal balanced rearrangements with hypospadias. The diagnosis of sex was made through physical examination, cytogenetic assay, ultrasonography, gonadal biopsy and hormonal analysis. PCR was used to detect SRY, ZFX, ZFY, DYZ3 and DYZ1 loci on Y and X chromosomes respectively. The DSD patients with the same category had similar clinical characteristics. The karyotypes in peripheral blood lymphocytes of all patients were identified. PCR-based analysis showed presence or absence of the X/Y-linked loci in several cases. Of the 9 cases of 46,XY DSD, 6 were positive for SRY, 9 for ZFX/ZFY, 9 for DYZ3 and 8 for DYZ1 loci. Of the 6 cases of TS, only 1 case with the karyotype of 45,X,/46,XX/46,XY was positive for all 5 loci. Of the 25 cases of Klinefelter syndrome, all were positive for all 5 loci. In one case of rare Klinefelter syndrome variants azoospermia factor (AZF) gene detection revealed the loss of the AZFa+AZFb region. In 14 cases of 46,XX DSD, 7 cases were positive for SRY, 14 for ZFX, 7 for ZFY, 7 for ZYZ3, and 5 for DYZ1. PCR can complement and also confirm cytogenetic studies in the diagnosis of sex in cases of DSD.
Adolescent
;
Adult
;
Child
;
Child, Preschool
;
Chromosome Aberrations
;
Chromosome Banding
;
Chromosomes, Human, X
;
genetics
;
Chromosomes, Human, Y
;
genetics
;
Disorders of Sex Development
;
diagnosis
;
genetics
;
Female
;
Gene Deletion
;
Genetic Loci
;
genetics
;
Humans
;
Karyotyping
;
Kruppel-Like Transcription Factors
;
genetics
;
Male
;
Polymerase Chain Reaction
;
Sex Chromosome Aberrations
;
Sex-Determining Region Y Protein
;
genetics
;
Young Adult
9.Y chromosome microdeletions: detection in 1 052 infertile men and analysis of 14 of their families.
Xiao-Bin ZHU ; Yun FENG ; Er-Lei ZHI ; Wei-Min FAN ; Ai-Jun ZHANG
National Journal of Andrology 2014;20(7):637-640
OBJECTIVETo investigate the characteristics of father-to-son vertical transmission of Y chromosome microdeletions
METHODSWe detected the Y by detection of Y chromosome microdeletions in infertile men and analysis of some of their families. chromosome azoospermia factor (AZF) microdeletions in the peripheral blood of 1 052 infertile males, investigated the paternal relatives of 12 cases of AZFc, 1 case of AZFb and 1 case of AZFb + c microdeletions, and drew the family tree diagrams of the infertile paternal relatives according to the findings.
RESULTSAmong the 1 052 infertile patients, 89 (9.73%) were found with Y chromosomal microdeletions, including 56 with AZFc, 6 with AZFa, 5 with AZFb, 14 with AZFb + c, and 8 with AZFa + b + c deletion. The investigation of the 14 patients'families revealed 1 case of AZFb and 1 case of AZFb + c deletion de novo. Among the 12 cases of AZFc deletion, vertical heredity was found in 5 patients with severe oligozoospermia, but not in the other 7 with azoospermia.
CONCLUSIONAZFe deletion may be vertically inherited from the father in severe oligozoospermia patients, and it is different from the paternal phenotype, while in azoospermia patients, AZF deletion, whatever type it may be, is less likely to be associated with vertical paternal heredity.
Adult ; Chromosome Deletion ; Chromosomes, Human, Y ; genetics ; Humans ; Infertility, Male ; Male ; Mass Screening ; Pedigree ; Sex Chromosome Aberrations ; Sex Chromosome Disorders of Sex Development ; genetics ; Young Adult
10.SRY gene-testing in the diagnosis of disorders of sex development among children.
Ping-Xia XIANG ; Xiang DAI ; Pei LENG ; Ling LIU ; Xi-Jiang HU
Chinese Journal of Contemporary Pediatrics 2013;15(7):555-558
OBJECTIVETo investigate the value of direct sequencing of sex-determining region Y (SRY) gene, as well as peripheral blood karyotype analysis, in the diagnosis of disorders of sex development (DSD) among children and adolescents with ambiguous genitalia.
METHODSThe karyotypes of 20 children and adolescents with ambiguous genitalia were determined by conventional G-banding analysis. PCR amplification was used to detect SRY gene in these patients, and direct sequencing was used to judge whether there was SRY gene mutation.
RESULTSOf the 20 cases, 17 were positive for SRY gene, and 3 were negative for SRY gene. Direct sequencing revealed no SRY gene mutation in the positive cases, however karyotype analysis found 4 special karyotypes in these patients: 46, XY, del(Y) (q12)/45, X; 46, XY, add(Y) (p11); 46, XY, r(9); 46, XY, 9qh+.
CONCLUSIONSSRY gene detection can help determine the type of DSD among children and has the advantage of quick detection. Used together with G-banding analysis, it is helpful for primary diagnosis of DSD among children.
Adolescent ; Child ; Child, Preschool ; Chromosome Banding ; Disorders of Sex Development ; diagnosis ; genetics ; Humans ; Infant ; Infant, Newborn ; Karyotype ; Sex-Determining Region Y Protein ; genetics

Result Analysis
Print
Save
E-mail