1.The toxicity of ZnO and CuO nanoparticles on biological wastewater treatment and its detoxification: a review.
Yuran YANG ; Can ZHANG ; Zhenlun LI
Chinese Journal of Biotechnology 2023;39(3):1026-1039
The wide use of ZnO and CuO nanoparticles in research, medicine, industry, and other fields has raised concerns about their biosafety. It is therefore unavoidable to be discharged into the sewage treatment system. Due to the unique physical and chemical properties of ZnO NPs and CuO NPs, it may be toxic to the members of the microbial community and their growth and metabolism, which in turn affects the stable operation of sewage nitrogen removal. This study summarizes the toxicity mechanism of two typical metal oxide nanoparticles (ZnO NPs and CuO NPs) to nitrogen removal microorganisms in sewage treatment systems. Furthermore, the factors affecting the cytotoxicity of metal oxide nanoparticles (MONPs) are summarized. This review aims to provide a theoretical basis and support for the future mitigating and emergent treatment of the adverse effects of nanoparticles on sewage treatment systems.
Wastewater/toxicity*
;
Sewage/chemistry*
;
Zinc Oxide/chemistry*
;
Waste Disposal, Fluid
;
Nanoparticles/chemistry*
;
Metal Nanoparticles/chemistry*
;
Nitrogen/metabolism*
;
Water Purification
2.Recent advances in the structure and function of microbial community in anaerobic granular sludge.
Changjie GUO ; Weigang WANG ; Yayi WANG
Chinese Journal of Biotechnology 2023;39(11):4517-4533
Anaerobic granular sludge (AnGS), a self-immobilized aggregate containing various functional microorganisms, is considered as a promising green process for wastewater treatment. AnGS has the advantages of high volume loading rate, simple process and low excess sludge generation, thus shows great technological and economical potentials. This review systematically summarizes the recent advances of the microbial community structure and function of anaerobic granular sludge, and discusses the factors affecting the formation and stability of anaerobic granular sludge from the perspective of microbiology. Moreover, future research directions of AnGS are prospected. This review is expected to facilitate the research and engineering application of AnGS.
Sewage/chemistry*
;
Waste Disposal, Fluid
;
Anaerobiosis
;
Microbiota
;
Water Purification
;
Bioreactors/microbiology*
3.Effects of different external carbon sources and electron acceptors on interactions between denitrification and phosphorus removal in biological nutrient removal processes.
Xiang HU ; Dominika SOBOTKA ; Krzysztof CZERWIONKA ; Qi ZHOU ; Li XIE ; Jacek MAKINIA
Journal of Zhejiang University. Science. B 2018;19(4):305-316
The effects of two different external carbon sources (acetate and ethanol) and electron acceptors (dissolved oxygen, nitrate, and nitrite) were investigated under aerobic and anoxic conditions with non-acclimated process biomass from a full-scale biological nutrient removal-activated sludge system. When acetate was added as an external carbon source, phosphate release was observed even in the presence of electron acceptors. The release rates were 1.7, 7.8, and 3.5 mg P/(g MLVSS·h) (MLVSS: mixed liquor volatile suspended solids), respectively, for dissolved oxygen, nitrate, and nitrite. In the case of ethanol, no phosphate release was observed in the presence of electron acceptors. Results of the experiments with nitrite showed that approximately 25 mg NO2-N/L of nitrite inhibited anoxic phosphorus uptake regardless of the concentration of the tested external carbon sources. Furthermore, higher denitrification rates were obtained with acetate (1.4 and 0.8 mg N/(g MLVSS·h)) compared to ethanol (1.1 and 0.7 mg N/ (g MLVSS·h)) for both anoxic electron acceptors (nitrate and nitrite).
Biomass
;
Bioreactors
;
Carbon/chemistry*
;
Denitrification
;
Electrons
;
Nitrates
;
Nitrites
;
Oxygen
;
Phosphates
;
Phosphorus/chemistry*
;
Sewage
;
Waste Disposal, Fluid/methods*
;
Wastewater
;
Water Pollutants, Chemical
;
Water Purification/methods*
4.Screening of homoacetogen mixed culture converting H2/CO2 to acetate.
Kan LUO ; Bo FU ; Lijuan ZHANG ; Hongbo LIU ; He LIU
Chinese Journal of Biotechnology 2014;30(12):1901-1911
Homoacetogens are a group of microorganisms with application potential to produce chemicals and biofuels by the bioconversion of synthesis gas. In this study, we collected waste activated sludge samples to screen homoacetogens by Hungate anaerobic technique, and studied the effect of pH on acetate and alcohol production from H2/CO2 gas. The mixed culture contained Clostridium ljungdahlii, Lysinibacillus fusiformis and Bacillus cereus. Acetate concentration achieved 31.69 mmol/L when the initial pH was 7. The mixed culture containing homoacetogen could converting H2/CO2 to acetate, which provides an efficient microbial resource for the bioconversion of synthesis gas.
Acetates
;
chemistry
;
Bacteria
;
classification
;
Biofuels
;
Carbon Dioxide
;
Hydrogen
;
Sewage
;
microbiology
5.Start-up of a full-scale system for short-cut nitrification and Anammox in treatment of pharmaceutical wastewater.
Shuang DING ; Ping ZHENG ; Zonghe ZHANG ; Huifeng LU ; Meng ZHANG ; Datian WU ; Zegao WU
Chinese Journal of Biotechnology 2014;30(12):1889-1900
In order to broaden the application area of the new nitrogen removal technology, a full-scale system for short-cut nitrification and anaerobic ammonium oxidation (Anammox) was investigated in the nitrogen removal from a strong-ammonium pharmaceutical wastewater. When the influent ammonium concentration was (430.40 ± 55.43) mg/L, ammonia removal efficiency was (81.75 ± 9.10)%. The short-cut nitrification and Anammox system could successfully remove nitrogen from the pharmaceutical wastewater. The start-up of short-cut nitrification system took about 74 d and the nitrite accumulation efficiency was (52.11 ± 9.13)%, the two-step mode using synthetic wastewater and actual wastewater was suitable for the start-up of short-cut nitrification system. The start-up of Anammox system took about 145 d and the maximum volumetric nitrogen removal rate was 6.35 kg N/(m3·d), dozens of times higher than those for the conventional nitrification-denitrification process. The strategy achieving Anammox sludge by self-growth and biocatalyst addition was suitable for the start-up of Anammox system.
Ammonia
;
chemistry
;
Bioreactors
;
Drug Industry
;
Nitrification
;
Nitrites
;
chemistry
;
Nitrogen
;
chemistry
;
Sewage
;
microbiology
;
Waste Disposal, Fluid
;
methods
;
Waste Water
;
chemistry
6.Influence of preservation temperature on the characteristics of Anammox granular sludge.
Baoshan XING ; Qiong GUO ; Jue ZHANG ; Lixin GUO ; Rencun SIN
Chinese Journal of Biotechnology 2014;30(12):1876-1888
To study the effect of preservation temperature on the characteristics of anaerobic ammonium oxidation (Anammox) granules and optimize the preservation temperature of Anammox granules, the Anammox granules were cultivated in an upflow anaerobic sludge bed reactor through adjusting the hydraulic retention times, and the inorganic carbon with KHCO3/NaHCO3 was alternately supplied. Subsequently, the enriched Anammox granules were preserved at -40, 4 and 35 °C, and ambient temperature of (27 ± 4) °C. NaHCO3 can be used as the inorganic carbon for the growth of anaerobic ammonium oxidizing bacterium (AnAOB). The best preservation temperature was 4 °C for maintaining Anammox biomass, Anammox activity, settleability, and the integrity of the Anammox granule and AnAOB cell structure. During the preservation period, the first-order exponential decay model can simulate the decay of Anammox biomass and activity, and the decay coefficients (bAN) of Anammox biomass and activity had positive correlation with the degree of AnAOB cell lysis. Meanwhile, the rate of Anammox biomass decay was larger than that of Anammox activity. The ratio of protein to polysaccharide in extracellular polymeric substances and heme c cannot effectively indicate the changes of Anammox granules settleability and activity, respectively, and the bioactivity has a negative association with the degree of AnAOB cell lysis.
Ammonia
;
chemistry
;
Anaerobiosis
;
Bacteria, Anaerobic
;
Biomass
;
Bioreactors
;
Carbon
;
Models, Theoretical
;
Oxidation-Reduction
;
Sewage
;
microbiology
;
Temperature
7.Microbial community in the Anammox process of thermal denitration tail liquid.
Jin LI ; Deshuang YU ; Dan ZHAO ; Xiaochen WANG
Chinese Journal of Biotechnology 2014;30(12):1865-1875
An anaerobic sequencing batch reactor (ASBR) was used to treat thermal denitration tail liquid and microbial community was studied. Activated sludge was taken from the reactor for scanning electron microscope analysis. The images showed that the dominant cells in the flora were oval cocci. Its diameter was about 0.7 μm. Through a series of molecular biology methods such as extracting total DNA from the sludge, PCR amplification, positive clone authentication and sequencing, we obtained the 16S rDNA sequences of the flora. Phylogenetic tree and clone library were established. The universal bacteria primers of 27F-1492R PCR amplification system obtained 85 clones and could be divided into 21 OTUS. The proportions were as follows: Proteobacteria 61.18%; Acidobacteria 17.65%; Chlorobi 8.24%; Chlorofexi 5.88%; Gemmatimonadetes 3.53%; Nitrospirae 2.35% and Planctomycetes 1.18%. The specific anammox bacterial primers of pla46rc-630r and AMX368-AMX820 PCR amplification system obtained 45 clones. They were divided into 3 OTUS. Candidatus brocadia sp. occupied 95.6% and unknown strains occupied 4.4%.
Ammonia
;
chemistry
;
Bacteria
;
Phylogeny
;
Polymerase Chain Reaction
;
RNA, Ribosomal, 16S
;
Sewage
;
microbiology
8.Physicochemical and ecological characteristics of the granular sludge during start-up of Anammox reactor.
Yuxia SONG ; Lei XIONG ; Liyuan CHAI ; Qi LIAO ; Chongjian TANG ; Xiaobo MIN ; Zhihui YANG
Chinese Journal of Biotechnology 2014;30(12):1854-1864
The anaerobic granular sludge from an Internal Circulation (IC) reactor of a paper mill wastewater treatment plant were seeded in an Anammox upflow anaerobic sludge blanket reactor. After 185 days operation, the reactor was finally started up by increasing the influent ammonium and nitrite concentrations to 224 mg/L and 255 mg/L, respectively, with volumetric nitrogen removal rate increasing to 3.76 kg/(m3·d). The physicochemical characteristics of the cultivated Anammox granules were observed by scanning electron microscope, transmission electron microscope and Fourier Transform infrared spectroscopy (FTIR). Results suggested that during the start-up course, the granular sludge initially disintegrated and then re-aggregated. FTIR spectra results revealed that the Anammox granular sludge contained abundant functional groups, indicating that it may also possess good adsorption properties. The ecological structure of the granular sludge, analyzed by the metagenomic sequencing methods, suggested that the relative abundance of the dominant bacterial community in the seeding sludge, i.e., Proteobacteria, Firmicutes, Bacteroidetes, significantly reduced, while Planctomycetes which contains anaerobic ammonium oxidation bacteria remarkably increased from 1.59% to 23.24% in the Anammox granules.
Ammonia
;
chemistry
;
Bacteria
;
Bioreactors
;
Nitrogen
;
chemistry
;
Sewage
;
microbiology
;
Waste Disposal, Fluid
;
methods
;
Waste Water
;
chemistry
9.Enrichment of anaerobic ammonium oxidation bacteria by expanded-granular sludge bed reactor.
Xiaoli HUANG ; Dawen GAO ; Yan CONG ; Xiaolong WANG
Chinese Journal of Biotechnology 2014;30(12):1845-1853
An expanded-granular sludge bed (EGSB) reactor was set-up with artificial water by seeding a 60 d stored ANAMMOX sludge. The nitrogen removal efficiency of ANAMMOX enrichment culture in the reactor was determined. In addition, the main microbial populations and the relative abundance of ANAMMOX bacteria were investigated by molecular approaches. Results show that the maximum nitrogen removal rate was 3.0 kg-N·m(-3)·d(-1) after 185 d, and the ammonium and nitrite removal efficiencies were all over 85%. Analysis of 16S rRNA gene-cloning indicates that the main microbial population in the ANAMMOX enrichment culture was changed from Candidatus Brocadiafulgid and Candidatus Brocadia brasiliensis (0 day) to Candidatus Jettenia asiatica (185 day). Fluorescence in situ hybridization analysis shows that the relative abundance of ANAMMOX bacteria was increased from (57.69 ± 4.79)% to (83.32 ± 4.40)%. The results of qPCR further indicate that the gene copies of ANAMMOX bacteria in the granules were increased from 1.14 x 10(11) copies/g wet weight to 3.69 x 10(11) copies/g wet weight.
Ammonia
;
chemistry
;
Anaerobiosis
;
Bacteria
;
classification
;
Bioreactors
;
microbiology
;
In Situ Hybridization, Fluorescence
;
Nitrites
;
chemistry
;
Nitrogen
;
chemistry
;
RNA, Ribosomal, 16S
;
Sewage
;
microbiology
10.Simultaneous removal of carbon and nitrogen from organic-rich wastewater with Anammox.
Chongjun CHEN ; Weijing ZHU ; Xiaoxiao HUANG ; Weixiang WU
Chinese Journal of Biotechnology 2014;30(12):1835-1844
In order to simultaneously remove carbon and nitrogen from organic-rich wastewater, we used an up-flow anaerobic sludge bed/blanket (UASB) reactor that was started up with anammox with high concentration of carbon and nitrogen by gradually raising the organic loading of influent. We optimized the removal of nitrogen and carbon when the chemical oxygen demand (COD) concentration varied from 172 to 620 mg/L. During the entire experiment, the ammonium and total nitrogen removal efficiency was higher than 85%, while the average COD removal efficiency was 56.6%. The high concentration of organic matter did not restrain the activity of anammox bacteria. Based on polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and tapping sequencing analyses, the Planctomycete, Proteobacteria, Chloroflexi, Chlorobi bacteria are detected in the UASB reactor, which indicated complex removal pathway of carbon and nitrogen coexisted in the reactor. However, a part of Planctomycete which referred to anammox bacteria could tolerate a high content of organic carbon, and it provided help for high performance of nitrogen removal in UASB reactor.
Ammonia
;
chemistry
;
Biological Oxygen Demand Analysis
;
Bioreactors
;
Carbon
;
chemistry
;
Nitrogen
;
chemistry
;
Sewage
;
Waste Disposal, Fluid
;
methods
;
Waste Water
;
chemistry

Result Analysis
Print
Save
E-mail