1.Microglial galectin-3 increases with aging in the mouse hippocampus
Hyun Joo SHIN ; So Jeong LEE ; Hyeong Seok AN ; Ha Nyeoung CHOI ; Eun Ae JEONG ; Jaewoong LEE ; Kyung Eun KIM ; Bong-Hoi CHOI ; Seung Pil YUN ; Dawon KANG ; Sang Soo KANG ; Gu Seob ROH
The Korean Journal of Physiology and Pharmacology 2025;29(2):215-225
Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood. In the present study, we investigated aging-related mechanisms and microglial galectin-3 expression in the mouse hippocampus using female 6-, 12-, and 24-month-old C57BL/6 mice. Western blot analysis revealed neurodegeneration, blood-brain barrier leakage, and increased levels of neuroinflammation-related proteins in 24-month-old mice compared to 6- and 12-month-old mice. Immunohistochemistry revealed an increase in activated microglia in the hippocampus of 24-month-old mice compared to 6- and 12-month-old mice. Furthermore, we found more galectin-3 and triggering receptor expressed on myeloid cells-2-positive microglia in 24-month-old mice compared to 6- and 12-month-old mice. Using primary mouse microglial cells, galectin -3 was also increased by lipopolysaccharide treatment. These findings suggest that galectin-3 may play an important role in microglial activation and neuroinflammation during brain aging.
2.Microglial galectin-3 increases with aging in the mouse hippocampus
Hyun Joo SHIN ; So Jeong LEE ; Hyeong Seok AN ; Ha Nyeoung CHOI ; Eun Ae JEONG ; Jaewoong LEE ; Kyung Eun KIM ; Bong-Hoi CHOI ; Seung Pil YUN ; Dawon KANG ; Sang Soo KANG ; Gu Seob ROH
The Korean Journal of Physiology and Pharmacology 2025;29(2):215-225
Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood. In the present study, we investigated aging-related mechanisms and microglial galectin-3 expression in the mouse hippocampus using female 6-, 12-, and 24-month-old C57BL/6 mice. Western blot analysis revealed neurodegeneration, blood-brain barrier leakage, and increased levels of neuroinflammation-related proteins in 24-month-old mice compared to 6- and 12-month-old mice. Immunohistochemistry revealed an increase in activated microglia in the hippocampus of 24-month-old mice compared to 6- and 12-month-old mice. Furthermore, we found more galectin-3 and triggering receptor expressed on myeloid cells-2-positive microglia in 24-month-old mice compared to 6- and 12-month-old mice. Using primary mouse microglial cells, galectin -3 was also increased by lipopolysaccharide treatment. These findings suggest that galectin-3 may play an important role in microglial activation and neuroinflammation during brain aging.
3.Microglial galectin-3 increases with aging in the mouse hippocampus
Hyun Joo SHIN ; So Jeong LEE ; Hyeong Seok AN ; Ha Nyeoung CHOI ; Eun Ae JEONG ; Jaewoong LEE ; Kyung Eun KIM ; Bong-Hoi CHOI ; Seung Pil YUN ; Dawon KANG ; Sang Soo KANG ; Gu Seob ROH
The Korean Journal of Physiology and Pharmacology 2025;29(2):215-225
Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood. In the present study, we investigated aging-related mechanisms and microglial galectin-3 expression in the mouse hippocampus using female 6-, 12-, and 24-month-old C57BL/6 mice. Western blot analysis revealed neurodegeneration, blood-brain barrier leakage, and increased levels of neuroinflammation-related proteins in 24-month-old mice compared to 6- and 12-month-old mice. Immunohistochemistry revealed an increase in activated microglia in the hippocampus of 24-month-old mice compared to 6- and 12-month-old mice. Furthermore, we found more galectin-3 and triggering receptor expressed on myeloid cells-2-positive microglia in 24-month-old mice compared to 6- and 12-month-old mice. Using primary mouse microglial cells, galectin -3 was also increased by lipopolysaccharide treatment. These findings suggest that galectin-3 may play an important role in microglial activation and neuroinflammation during brain aging.
4.Microglial galectin-3 increases with aging in the mouse hippocampus
Hyun Joo SHIN ; So Jeong LEE ; Hyeong Seok AN ; Ha Nyeoung CHOI ; Eun Ae JEONG ; Jaewoong LEE ; Kyung Eun KIM ; Bong-Hoi CHOI ; Seung Pil YUN ; Dawon KANG ; Sang Soo KANG ; Gu Seob ROH
The Korean Journal of Physiology and Pharmacology 2025;29(2):215-225
Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood. In the present study, we investigated aging-related mechanisms and microglial galectin-3 expression in the mouse hippocampus using female 6-, 12-, and 24-month-old C57BL/6 mice. Western blot analysis revealed neurodegeneration, blood-brain barrier leakage, and increased levels of neuroinflammation-related proteins in 24-month-old mice compared to 6- and 12-month-old mice. Immunohistochemistry revealed an increase in activated microglia in the hippocampus of 24-month-old mice compared to 6- and 12-month-old mice. Furthermore, we found more galectin-3 and triggering receptor expressed on myeloid cells-2-positive microglia in 24-month-old mice compared to 6- and 12-month-old mice. Using primary mouse microglial cells, galectin -3 was also increased by lipopolysaccharide treatment. These findings suggest that galectin-3 may play an important role in microglial activation and neuroinflammation during brain aging.
5.Microglial galectin-3 increases with aging in the mouse hippocampus
Hyun Joo SHIN ; So Jeong LEE ; Hyeong Seok AN ; Ha Nyeoung CHOI ; Eun Ae JEONG ; Jaewoong LEE ; Kyung Eun KIM ; Bong-Hoi CHOI ; Seung Pil YUN ; Dawon KANG ; Sang Soo KANG ; Gu Seob ROH
The Korean Journal of Physiology and Pharmacology 2025;29(2):215-225
Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood. In the present study, we investigated aging-related mechanisms and microglial galectin-3 expression in the mouse hippocampus using female 6-, 12-, and 24-month-old C57BL/6 mice. Western blot analysis revealed neurodegeneration, blood-brain barrier leakage, and increased levels of neuroinflammation-related proteins in 24-month-old mice compared to 6- and 12-month-old mice. Immunohistochemistry revealed an increase in activated microglia in the hippocampus of 24-month-old mice compared to 6- and 12-month-old mice. Furthermore, we found more galectin-3 and triggering receptor expressed on myeloid cells-2-positive microglia in 24-month-old mice compared to 6- and 12-month-old mice. Using primary mouse microglial cells, galectin -3 was also increased by lipopolysaccharide treatment. These findings suggest that galectin-3 may play an important role in microglial activation and neuroinflammation during brain aging.
6.Catalpa bignonioides extract improves exercise performance through regulation of growth and metabolism in skeletal muscles
Hoibin Jeong ; Dong-joo Lee ; Sung-Pil Kwon ; SeonJu Park ; Song-Rae Kim ; Seung Hyun Kim ; Jae-Il Park ; Deug-chan Lee ; Kyung-Min Choi ; WonWoo Lee ; Ji-Won Park ; Bohyun Yun ; Su-Hyeon Cho ; Kil-Nam Kim
Asian Pacific Journal of Tropical Biomedicine 2024;14(2):47-54
Objective: To evaluate the effects of Catalpa bignonioides fruit extract on the promotion of muscle growth and muscular capacity in vitro and in vivo. Methods: Cell viability was measured using the 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide assay. Cell proliferation was assessed using a 5-bromo-2’-deoxyuridine (BrdU) assay kit. Western blot analysis was performed to determine the protein expressions of related factors. The effects of Catalpa bignonioides extract were investigated in mice using the treadmill exhaustion test and whole-limb grip strength assay. Chemical composition analysis was performed using high-performance liquid chromatography (HPLC). Results: Catalpa bignonioides extract increased the proliferation of C2C12 mouse myoblasts by activating the Akt/mTOR signaling pathway. It also induced metabolic changes, increasing the number of mitochondria and glucose metabolism by phosphorylating adenosine monophosphate-activated protein kinase. In an in vivo study, the extract-treated mice showed improved motor abilities, such as muscular endurance and grip strength. Additionally, HPLC analysis showed that vanillic acid may be the main component of the Catalpa bignonioides extract that enhanced muscle strength. Conclusions: Catalpa bignonioides improves exercise performance through regulation of growth and metabolism in skeletal muscles, suggesting its potential as an effective natural agent for improving muscular strength.
7.Clinical Outcome after Everolimus-Eluting Stent Implantation for Small Vessel Coronary Artery Disease: XIENCE Asia Small Vessel Study
Doo Sun SIM ; Dae Young HYUN ; Young Joon HONG ; Ju Han KIM ; Youngkeun AHN ; Myung Ho JEONG ; Sang Rok LEE ; Jei Keon CHAE ; Keun Ho PARK ; Young Youp KOH ; Kyeong Ho YUN ; Seok Kyu OH ; Seung Jae JOO ; Sun Ho HWANG ; Jong Pil PARK ; Jay Young RHEW ; Su Hyun KIM ; Jang Hyun CHO ; Seung Uk LEE ; Dong Goo KANG
Chonnam Medical Journal 2024;60(1):78-86
There are limited data on outcomes after implantation of everolimus-eluting stents (EES) in East Asian patients with small vessel coronary lesions. A total of 1,600 patients treated with XIENCE EES (Abbott Vascular, CA, USA) were divided into the small vessel group treated with one ≤2.5 mm stent (n=119) and the non-small vessel group treated with one ≥2.75 mm stent (n=933). The primary end point was a patient-oriented composite outcome (POCO), a composite of all-cause death, myocardial infarction (MI), and any repeat revascularization at 12 months. The key secondary end point was a device-oriented composite outcome (DOCO), a composite of cardiovascular death, target-vessel MI, and target lesion revascularization at 12 months. The small vessel group was more often female, hypertensive, less likely to present with ST-elevation MI, and more often treated for the left circumflex artery, whereas the non-small vessel group more often had type B2/C lesions, underwent intravascular ultrasound, and received unfractionated heparin. In the propensity matched cohort, the mean stent diameter was 2.5±0.0 mm and 3.1±0.4 mm in the small and non-small vessel groups, respectively. Propensity-adjusted POCO at 12 months was 6.0% in the small vessel group and 4.3% in the non-small vessel group (p=0.558). There was no significant difference in DOCO at 12 months (small vessel group: 4.3% and non-small vessel group: 1.7%, p=0.270).Outcomes of XIENCE EES for small vessel disease were comparable to those for non-small vessel disease at 12-month clinical follow-up in real-world Korean patients.
8.Genomic Signatures from Clinical Tumor Sequencing in Patients with Breast Cancer Having Germline BRCA1/2 Mutation
Ju Won KIM ; Hyo Eun KANG ; Jimi CHOI ; Seung Gyu YUN ; Seung Pil JUNG ; Soo Yeon BAE ; Ji Young YOU ; Yoon-Ji CHOI ; Yeul Hong KIM ; Kyong Hwa PARK
Cancer Research and Treatment 2023;55(1):155-166
Purpose:
BRCA1 and BRCA2 are among the most important genes involved in DNA repair via homologous recombination (HR). Germline BRCA1/2 (gBRCA1/2)-related cancers have specific characteristics and treatment options but conducting gBRCA1/2 testing and interpreting the genetic imprint are sometimes complicated. Here, we describe the concordance of gBRCA1/2 derived from a panel of clinical tumor tissues using next-generation sequencing (NGS) and genetic aspects of tumors harboring gBRCA1/2 pathogenic variants.
Materials and Methods:
Targeted sequencing was performed using available tumor tissue from patients who underwent gBRCA1/2 testing. Comparative genomic analysis was performed according to gBRCA1/2 pathogenicity.
Results:
A total of 321 patients who underwent gBRCA1/2 testing were screened, and 26 patients with gBRCA1/2 pathogenic (gBRCA1/2p) variants, eight patients with gBRCA1/2 variants of uncertain significance (VUS; gBRCA1/2v), and 43 patients with gBRCA1/2 wild-type (gBRCA1/2w) were included in analysis. Mutations in TP53 (49.4%) and PIK3CA (23.4%) were frequently detected in all samples. The number of single-nucleotide variants (SNVs) per tumor tissue was higher in the gBRCA1/2w group than that in the gBRCA1/2p group (14.81 vs. 18.86, p=0.278). Tumor mutation burden (TMB) was significantly higher in the gBRCA1/2w group than in the gBRCA1/2p group (10.21 vs. 13.47, p=0.017). Except for BRCA1/2, other HR-related genes were frequently mutated in patients with gBRCA1/2w.
Conclusion
We demonstrated high sensitivity of gBRCA1/2 in tumors analyzed by NGS using a panel of tumor tissues. TMB value and aberration of non-BRCA1/2 HR-related genes differed significantly according to gBRCA1/2 pathogenicity in patients with breast cancer.
9.Single-cell RNA sequencing identifies distinct transcriptomic signatures between PMA/ionomycin- and αCD3/αCD28-activated primary human T cells
Jung Ho LEE ; Brian H LEE ; Soyoung JEONG ; Christine Suh-Yun JOH ; Hyo Jeong NAM ; Hyun Seung CHOI ; Henry SSERWADDA ; Ji Won OH ; Chung-Gyu PARK ; Seon-Pil JIN ; Hyun Je KIM
Genomics & Informatics 2023;21(2):e18-
Immunologists have activated T cells in vitro using various stimulation methods, including phorbol myristate acetate (PMA)/ionomycin and αCD3/αCD28 agonistic antibodies. PMA stimulates protein kinase C, activating nuclear factor-κB, and ionomycin increases intracellular calcium levels, resulting in activation of nuclear factor of activated T cell. In contrast, αCD3/αCD28 agonistic antibodies activate T cells through ZAP-70, which phosphorylates linker for activation of T cell and SH2-domain-containing leukocyte protein of 76 kD. However, despite the use of these two different in vitro T cell activation methods for decades, the differential effects of chemical-based and antibody-based activation of primary human T cells have not yet been comprehensively described. Using single-cell RNA sequencing (scRNA-seq) technologies to analyze gene expression unbiasedly at the single-cell level, we compared the transcriptomic profiles of the non-physiological and physiological activation methods on human peripheral blood mononuclear cell–derived T cells from four independent donors. Remarkable transcriptomic differences in the expression of cytokines and their respective receptors were identified. We also identified activated CD4 T cell subsets (CD55+) enriched specifically by PMA/ionomycin activation. We believe this activated human T cell transcriptome atlas derived from two different activation methods will enhance our understanding, highlight the optimal use of these two in vitro T cell activation assays, and be applied as a reference standard when analyzing activated specific disease-originated T cells through scRNA-seq.
10.Differences in the heritability of craniofacial skeletal and dental characteristics between twin pairs with skeletal Class I and II malocclusions
Heon-Mook PARK ; Pil-Jong KIM ; Joohon SUNG ; Yun-Mi SONG ; Hong-Gee KIM ; Young Ho KIM ; Seung-Hak BAEK
The Korean Journal of Orthodontics 2021;51(6):407-418
Objective:
To investigate differences in the heritability of skeletodental characteristics between twin pairs with skeletal Class I and Class II malocclusions.
Methods:
Forty Korean adult twin pairs were divided into Class I (C-I) group (0° ≤ angle between point A, nasion, and point B [ANB]) ≤ 4°; mean age, 40.7 years) and Class II (C-II) group (ANB > 4°; mean age, 43.0 years). Each group comprised 14 monozygotic and 6 dizygotic twin pairs. Thirty-three cephalometric variables were measured using lateral cephalograms and were categorized as the anteroposterior, vertical, dental, mandible, and cranial base characteristics. The ACE model was used to calculate heritability (A > 0.7, high heritability). Thereafter, principal component analysis (PCA) was performed.
Results:
Twin pairs in C-I group exhibited high heritability values in the facial anteroposterior characteristics, inclination of the maxillary and mandibular incisors, mandibular body length, and cranial base angles. Twin pairs in C-II group showed high heritability values in vertical facial height, ramus height, effective mandibular length, and cranial base length. PCA extracted eight components with 88.3% in the C-I group and seven components with 91.0% cumulative explanation in the C-II group.
Conclusions
Differences in the heritability of skeletodental characteristics between twin pairs with skeletal Class I and II malocclusions might provide valuable information for growth prediction and treatment planning.

Result Analysis
Print
Save
E-mail