1.Effect of electroacupuncture at "Hegu" (LI4) and "Taichong" (LR3) on DNA methylation of the SLC6A4 gene promoter in the hippocampus of depressed rats.
Xi ZHANG ; Shengyong SU ; Xin LI ; Tian WANG
Chinese Acupuncture & Moxibustion 2025;45(11):1609-1616
OBJECTIVE:
To observe the effect of electroacupuncture (EA) at "Hegu" (LI4) and "Taichong" (LR3) on DNA methylation of the solute carrier family 6 member 4 (SLC6A4) gene promoter region in the hippocampus of depressed rats, and to explore the potential antidepressant mechanism of EA.
METHODS:
Thirty male Sprague-Dawley rats were randomly divided into a blank group, a model group, a medication group, a 5-Azacytidine (5-AZA) group, and an EA group, 6 rats in each group. Depression models were established in the model group, the medication group, the 5-AZA group, and the EA group using chronic unpredictable mild stress (CUMS) combined with solitary housing. The medication group was treated with intragastric administration of fluoxetine hydrochloride capsules; the 5-AZA group was treated with intraperitoneal injection of 5-AZA; the EA group was treated with EA at bilateral "Hegu" (LI4) and "Taichong" (LR3), with disperse-dense wave, frequency of 2 Hz/100 Hz, and intensity of 1-1.2 mA, 20 min each session. All the treatment was given in three groups once daily for 21 consecutive days. Behavioral changes were evaluated by sucrose preference test, open field test, and novelty-suppressed feeding test. Serum levels of serotonin (5-HT), dopamine (DA), and norepinephrine (NE) were measured by ELISA. The expression of SLC6A4 and 5-HT1AR protein and mRNA in hippocampus was detected by Western blot and real-time quantitative PCR, respectively. DNA methylation status of the SLC6A4 promoter region in hippocampal tissue was analyzed by bisulfite sequencing PCR (BSP).
RESULTS:
Compared with the blank group, the model group showed decreased sucrose preference, reduced total locomotor distance, and prolonged latency to feeding (P<0.05), decreased serum 5-HT, DA, and NE levels (P<0.05), downregulated hippocampal SLC6A4 and 5-HT1AR protein and mRNA expression (P<0.05), and increased CpG site methylation rate of the SLC6A4 promoter region (P<0.05). Compared with the model group, the medication group, the 5-AZA group, and the EA group exhibited increased sucrose preference, increased total locomotor distance, shortened latency to feeding (P<0.05), elevated serum 5-HT, DA, and NE levels (P<0.05), upregulated hippocampal SLC6A4 and 5-HT1AR protein and mRNA expression (P<0.05), and reduced CpG site methylation rate of the SLC6A4 promoter (P<0.05). Compared with the medication group and the 5-AZA group, the EA group showed higher sucrose preference, greater total locomotor distance, shorter latency to feeding (P<0.05), and increased serum DA and NE levels (P<0.05).
CONCLUSION
EA could improve depressive behaviors in depressed rat models. The underlying mechanism may involve inhibition of SLC6A4 hypermethylation in the hippocampus on the serotonergic system, upregulation of SLC6A4 and 5-HT1AR protein and mRNA expression, and elevation of monoamine neurotransmitters such as 5-HT.
Animals
;
Electroacupuncture
;
Male
;
Hippocampus/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
Acupuncture Points
;
DNA Methylation
;
Depression/metabolism*
;
Promoter Regions, Genetic
;
Serotonin Plasma Membrane Transport Proteins/metabolism*
;
Humans
2.Study on anti-depression effect of Suanzaoren Decoction based on liver metabolomics.
Jing LI ; Ya-Nan TONG ; Hong-Tao WANG ; Shao-Hua ZHAO ; Wei-Yan CHEN ; Zhi-Wei LI ; Min-Yan LIU
China Journal of Chinese Materia Medica 2025;50(1):19-31
To explore the anti-depression effect of Suanzaoren Decoction(SZRD), the regulatory effects on endogenous metabolites in the liver of rats with depression induced by chronic unpredictable mild stress(CUMS) were analyzed by using LC-MS metabolomics. The rats were randomly divided into normal control group, model group, low-dose SZRD group, high-dose SZRD group, and positive drug group. The CUMS depression model was replicated by applying a variety of stimuli, such as fasting and water deprivation, ice water swimming, hot water swimming, day and night reversal, tail clamping, and restraint for rats. Modeling and treatment were conducted for 56 days. The behavioral indexes of rats in each group, including body weight, open field test, sucrose preference test, and tail suspension test, were observed. Plasma samples and liver tissue samples were collected, and the contents of 5-hydroxytryptamine(5-HT), dopamine(DA), and norepinephrine(NE) in plasma were measured using enzyme-linked immunosorbent assay(ELISA). Meanwhile, the regulatory effects of SZRD on the liver metabolic profile of CUMS model rats were analyzed by the LC-MS metabolomics method. The results show that SZRD can significantly improve the depression-like behavior of CUMS model rats and increase the neurotransmitter levels of 5-HT, DA, and NE in plasma. A total of 24 different metabolites in the rats' liver are identified using the LC-MS metabolomics method, and SZRD can reverse 13 of these metabolites. Metabolic pathway analysis indicates that nine metabolic pathways are found to be significantly associated with depression, and in the low-dose SZRD group, four pathways can be regulated, including pentose phosphate pathway, purine metabolism, inositol phosphate metabolism, and sphingolipid metabolism. In the high-dose SZRD group, two metabolic pathways can be regulated, including sphingolipid metabolism and glycerol glycerophospholipid metabolism. Sphingolipid metabolism is a metabolic pathway that can be regulated by SZRD at different doses, so it is speculated that it may be the primary pathway through which SZRD can alleviate metabolic disturbances in the liver of CUMS model rats.
Animals
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Metabolomics
;
Depression/metabolism*
;
Male
;
Liver/drug effects*
;
Rats, Sprague-Dawley
;
Antidepressive Agents/administration & dosage*
;
Serotonin/blood*
;
Humans
;
Disease Models, Animal
;
Behavior, Animal/drug effects*
3.Effect of Fushen Decoction on 5-HT system and GABA expression in mouse model of PCPA-induced insomnia.
Jun-Hang HU ; Fei XU ; Tong-Sheng WANG ; Hua-Sheng PENG ; Li LI
China Journal of Chinese Materia Medica 2025;50(6):1581-1591
This study aims to observe the mind-tranquilizing effect of Fushen Decoction on mice and investigate its effects on the 5-hydroxytryptamine(5-HT) system and γ-aminobutyric acid(GABA) in the brain of the mouse model of 4-chloro-DL-phenylalanine(PCPA)-induced insomnia. ICR mice were administrated with coffee(1 g·kg~(-1)) for 3 days, and the effects of Fushen Decoction(10, 20, and 40 g·kg~(-1)) on the autonomic activities of normal mice and coffee-treated mice were observed. Furthermore, the effects of Fushen Decoction on the autonomic activity and sleep induced by a suprathreshold dose of pentobarbital sodium in the mouse model of PCPA(350 mg·kg~(-1) for 3 consecutive days)-induced insomnia were observed. The levels of tryptophan hydroxylase(TPH), 5-hydroxytryptophan(5-HTP), and 5-HT in the serum, as well as those of 5-HTP and 5-HT in the brain stem, hippocampus, and cortex, were measured by enzyme-linked immunosorbent assay(ELISA). The fluorescence intensity of 5-HT in the raphe nucleus, hippocampus, and cortex was measured by the immunofluorescence method. The protein levels of tryptophan hydroxylase-2(TPH2) and 5-HT_(1A) receptor(5-HT_(1A)R) in the brain stem, hippocampus, and cortex were measured by Western blot. The levels of GABA in the hypothalamus, hippocampus, and cortex were measured by ELISA and immunohistochemistry methods. The results showed that Fushen Decoction(20, 40 g·kg~(-1)) reduced the number of autonomous activities in normal mice, coffee-treated mice, and the mouse model of PCPA-induced insomnia, and prolonged the duration of sleep induced by a suprathreshold dose of pentobarbital sodium in the mouse model. Fushen Decoction(20, 40 g·kg~(-1)) elevated the levels of TPH, 5-HTP, and 5-HT in the serum, and TPH2, 5-HTP, 5-HT, and 5-HT_(1A)R in the brain stem, hippocampus, and cortex, and up-regulated GABA expression in the hypothalamus, cortex, and hippocampus of the mouse model of PCPA-induced insomnia. In conclusion, Fushen Decoction(20, 40 g·kg~(-1)) exerted a mind-tranquilizing effect on mice by up-regulating the expression of TPH2, enhancing the 5-HT system, and elevating the GABA level in the brain.
Animals
;
Serotonin/genetics*
;
Sleep Initiation and Maintenance Disorders/genetics*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Mice, Inbred ICR
;
gamma-Aminobutyric Acid/genetics*
;
Disease Models, Animal
;
Fenclonine/adverse effects*
;
Tryptophan Hydroxylase/genetics*
;
Brain/metabolism*
;
Sleep/drug effects*
;
Humans
;
5-Hydroxytryptophan/metabolism*
4.Mechanism of Xiangshao Granules in alleviating anxiety and depression in mice based on integrated metabolomics and gut microbiota.
Xiao-Chuan ZHANG ; Dong-Sheng YU ; Xiao-Ping LI
China Journal of Chinese Materia Medica 2025;50(16):4525-4537
This study aims to investigate the mechanism through which Xiangshao Granules treat anxiety and depression using metabolomics and gut microbiota techniques, combined with animal experiments. Sixty female ICR mice were selected for the experiment and randomly divided into six groups: a control group, a model group, a low-dose Xiangshao Granules group, a medium-dose Xiangshao Granules group, a high-dose Xiangshao Granules group, and an estradiol(positive drug) group. Except for the control group, rats in other groups were induced for anxiety and depression model by ovariectomy(OVX) combined with chronic unpredictable mild stress(CUMS). After successful modeling, the mice received oral administration of Xiangshao Granules or estradiol for three weeks. Anxiety and depression behaviors in mice were evaluated using light-dark box tests, open field tests, and elevated plus-maze tests. The levels of substances closely related to anxiety and depression, such as serotonin(5-HT) and estrogen(E_2), were quantified in plasma and hippocampal tissue using enzyme-linked immunosorbent assay(ELISA). Metabolomics and 16S rDNA amplicon sequencing techniques were employed to analyze the regulatory effects of Xiangshao Granules on plasma metabolites and metabolic pathways in anxiety and depression mice, as well as their impact on the distribution of gut microbiota. Finally, the correlation between plasma metabolites and differential gut microbiota was constructed using the Spearman correlation coefficient method. Behavioral experimental results indicated that, compared to the control group, the model group exhibited significantly decreased dwell time in the light box, reduced total distance in the open field, and diminished dwell time in the open arm. In contrast, high dose of Xiangshao Granules were found to increase the dwell time in the light box and total distance in the open field. ELISA results indicated that the levels of 5-HT, gamma-aminobutyric acid(GABA), E_2 were significantly decreased, luteinizing hormone(LH), adrenocorticotropic hormone(ACTH), and corticosterone(CORT) were significantly elevated in the anxiety and depression mice, and treatment with middle, high dose of Xiangshao Granules reversed the levels of these substances. Additionally, in the anxiety and depression mouse model, the levels of follicle-stimulating hormone(FSH) were significantly increased, whereas middle, high dose of Xiangshao Granules decreased FSH levels. Metabolomics analysis revealed that Xiangshao Granules significantly changed the metabolic profile of the anxiety and depression mice, affecting central carbon metabolism, amino acid biosynthesis, and ABC transporter pathways. The results from 16S rDNA amplicon sequencing showed that Xiangshao Granules improved the relative abundance of genera such as Bacteroidia, Bacilli, Lactobacillales, and Lactobacillus. Spearman correlation analysis indicated a close association between specific differential gut microbiota and plasma differential metabolites. This study suggests that Xiangshao Granules significantly ameliorate anxiety and depression symptoms in mice by altering the levels of substances associated with these conditions, including 5-HT, GABA, E_2, LH, and ACTH. The metabolomics and gut microbiota data suggest that the therapeutic mechanism may be closely related to the regulation of amino acid biosynthesis, central carbon metabolism, and the alteration of key microbial community compositions.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Anxiety/microbiology*
;
Depression/microbiology*
;
Gastrointestinal Microbiome/drug effects*
;
Mice
;
Female
;
Mice, Inbred ICR
;
Metabolomics
;
Serotonin/metabolism*
;
Humans
;
Disease Models, Animal
;
Rats
;
Behavior, Animal/drug effects*
5.In vitro effects of antidepressants on human sperm function.
Rita António SANTOS ; Ana Paula SOUSA ; Teresa ALMEIDA-SANTOS ; João RAMALHO-SANTOS ; Renata Santos TAVARES
Asian Journal of Andrology 2025;27(1):30-36
Depression currently affects about 280 million people worldwide and its prevalence has been increasing dramatically, especially among the young and people of reproductive age, which consequently leads to an increase in antidepressant consumption. Antidepressants are associated with sexual dysfunction in both men and women; however, their role in male fertility has been scarcely studied. Fluoxetine and sertraline, two serotonin reuptake inhibitors (SSRIs), are among the most prescribed antidepressants worldwide. To determine their possible effects, human sperm cells were exposed to either sertraline or fluoxetine at concentrations previously found in blood and seminal fluid of patients undergoing treatment. Spermatozoa were incubated for up to 24 h at 37°C and 5% CO 2 , and important functional parameters such as sperm motility, viability, mitochondrial membrane potential, cellular reactive oxygen species (ROS) production, chromatin/DNA integrity, acrosome status, and tyrosine phosphorylation were assessed. At low levels, fluoxetine consistently decreased progressive motility throughout time while promoting fluctuations in ROS levels and sperm capacitation. Nevertheless, it did not affect viability, mitochondrial membrane potential, acrosome reaction nor chromatin/DNA integrity. Sertraline, on the other hand, had little to nonsignificant impact at low doses, but affected almost all tested parameters at supratherapeutic concentrations. Altogether, our results suggest that both antidepressants may impair sperm function, possibly through different mechanisms of action, but fluoxetine is the only exhibiting mild negative effects at doses found in vivo .
Humans
;
Male
;
Spermatozoa/drug effects*
;
Fluoxetine/pharmacology*
;
Sperm Motility/drug effects*
;
Sertraline/pharmacology*
;
Reactive Oxygen Species/metabolism*
;
Antidepressive Agents/pharmacology*
;
Membrane Potential, Mitochondrial/drug effects*
;
Sperm Capacitation/drug effects*
;
Selective Serotonin Reuptake Inhibitors/pharmacology*
;
Cell Survival/drug effects*
;
Acrosome Reaction/drug effects*
6.5-HT Promotes Proliferation and Inhibits Apoptosis of Megakarycytes through 5-HT2BR.
Hui-Min KONG ; Yu-Rong CEN ; Mo YANG ; Qiang PENG ; Jin-Qi HUANG
Journal of Experimental Hematology 2025;33(1):75-81
OBJECTIVE:
To investigate the effect of 5-hydroxytryptamine (5-HT) on the proliferation, apoptosis and colony-forming unit-megakaryocyte (CFU-MK) of Meg-01 cells and its possible mechanisms.
METHODS:
The uptake and metabolism of 5-HT in Meg-01 cells were analysed by reverse-phase high-performance liquid chromatography (RP-HPLC) with electrochemical detection. The expression of 5-HT2B receptor (5-HT2BR) in megakaryocytes was detected by immunofluorescence staining. The cell proliferation and viability were measured by MTT and Trypan blue staining after Meg-01 cells were single-cultured or co-cultured with different concentrations of 5-HT/5-HT2BR inhibitor Ketanserin for 48 h. Meg-01 cells were incubated with 5-HT/ Ketanserin for 72 h, then the flow cytometry was used to detect early apoptosis of the cells and the activity of caspase-3. Using CFU-MK assay to investigate the effect of 5-HT on the differentiation of megakaryocytes.
RESULTS:
5-HT could be uptaken by Meg-01 cells, and metabolized into 5-hydroxyindoleacetic acid (5-HIAA). The expression of 5-HT2BR on megakaryocytes could be detected after immunofluorescence staining. 5-HT could promote the proliferation of Meg-01 cells at a dose-dependent manner (r =0.82), with the most significant effect observed at a concentration of 200 nmol/L (P < 0.001). Trypan blue staining also indicated that 200 nmol/L 5-HT had the most significant effect on the viability of Meg-01 cells (P < 0.05). The proliferation of Meg-01 cells treated with 5-HT was increased compared with the untreated control (P < 0.001), while the combination of 5-HT with ketanserin downregulated this effect. 5-HT significantly reduced the early apoptosis rate (P < 0.001) and caspase-3 activity (P < 0.05) of Meg-01 cells, while addition of ketanserin significantly increased the early apoptosis rate of Meg-01 cells (P < 0.001) and caspase-3 activity also increased to some extent. 5-HT promoted the formation of CFU-MK in bone marrow cells in a dose-dependent manner (r =0.89). The addition of ketanserin reduced the promoting effect of 5-HT on CFU-MK formation (P < 0.01).
CONCLUSION
There may be monoamine oxidase present in megakaryocytes, which can metabolize and decompose 5-HT into 5-HIAA. 5-HT may promote the proliferation and differentiation of megakaryocytes through 5-HT2BR. Besides, 5-HT can also reduce the apoptosis of megakaryocytes, and its anti-apoptotic effect may be mediated by 5-HT2BR and caspase-3 pathways.
Apoptosis/drug effects*
;
Cell Proliferation/drug effects*
;
Megakaryocytes/metabolism*
;
Serotonin/pharmacology*
;
Humans
;
Receptor, Serotonin, 5-HT2B/metabolism*
;
Caspase 3/metabolism*
;
Cell Differentiation
7.Effect of Hesperidin on Chronic Unpredictable Mild Stress-Related Depression in Rats through Gut-Brain Axis Pathway.
Hui-Qing LIANG ; Shao-Dong CHEN ; Yu-Jie WANG ; Xiao-Ting ZHENG ; Yao-Yu LIU ; Zhen-Ying GUO ; Chun-Fang ZHANG ; Hong-Li ZHUANG ; Si-Jie CHENG ; Xiao-Hong GU
Chinese journal of integrative medicine 2025;31(10):908-917
OBJECTIVES:
To determine the pharmacological impact of hesperidin, the main component of Citri Reticulatae Pericarpium, on depressive behavior and elucidate the mechanism by which hesperidin treats depression, focusing on the gut-brain axis.
METHODS:
Fifty-four Sprague Dawley male rats were randomly allocated to 6 groups using a random number table, including control, model, hesperidin, probiotics, fluoxetine, and Citri Reticulatae Pericarpium groups. Except for the control group, rats in the remaining 5 groups were challenged with chronic unpredictable mild stress (CUMS) for 21 days and housed in single cages. The sucrose preference test (SPT), immobility time in the forced swim test (FST), and number in the open field test (OFT) were performed to measure the behavioral changes in the rats. Enzyme-linked immunosorbent assay was used to determine the levels of 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) in brain tissue, and the histopathology was performed to evaluate the changes of colon tissue, together with sequencing of the V3-V4 regions of 16S rRNA gene on feces to explore the changes of intestinal flora in the rats.
RESULTS:
Compared to the control group, the rats in the model group showed notable reductions in body weight, SPF, and number in OFT (P<0.01). Hesperidin was found to ameliorate depression induced by CUMS, as seen by improvements in body weight, SPT, immobility time in FST, and number in OFT (P<0.05 or P<0.01). Regarding neurotransmitters, it was found that at a dose of 50 mg/kg hesperidin treatment upregulated the levels of 5-HT and BDNF in depressed rats (P<0.05). Compared to the control group, the colon tissue of the model group exhibited greater inflammatory cell infiltration, with markedly reduced numbers of goblet cells and crypts and were significantly improved following treatment with hesperidin. Simultaneously, the administration of hesperidin demonstrated a positive impact on the gut microbiome of rats treated with CUMS, such as Shannon index increased and Simpson index decreased (P<0.01), while the abundance of Pseudomonadota and Bacteroidota increased in the hesperidin-treated group (P<0.05).
CONCLUSION
The mechanism responsible for the beneficial effects of hesperidin on depressive behavior in rats may be related to inhibition of the expressions of BDNF and 5-HT and preservation of the gut microbiota.
Animals
;
Hesperidin/therapeutic use*
;
Rats, Sprague-Dawley
;
Depression/drug therapy*
;
Male
;
Stress, Psychological/drug therapy*
;
Brain/metabolism*
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Serotonin/metabolism*
;
Gastrointestinal Microbiome/drug effects*
;
Behavior, Animal/drug effects*
;
Rats
;
Brain-Gut Axis/drug effects*
;
Chronic Disease
;
Colon/drug effects*
8.Mechanism of Banxia Houpo Decoction in Treating Gastroesophageal Reflux Disease: An Integrated Approach of Compound Analysis, Network Pharmacology and Empirical Verification.
Shun-Zhe SONG ; Jiang-Nan XIE ; Jing-Wen ZHANG ; Ai-Xia GONG
Chinese journal of integrative medicine 2025;31(10):889-898
OBJECTIVE:
To elucidate the mechanism of Banxia Houpo Decoction (BHD) in treating gastroesophageal reflux disease (GERD) by integrating and utilizing the compound analysis, network pharmacology, and empirical verification.
METHODS:
Ultra-high performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) was utilized to identify the primary compounds in BHD. Network pharmacology was employed to retrieve target genes. A GERD rat model was developed and 32 SD rats were randomly divided into model, BHD-L (3 g/kg), BHD-H (6 g/kg), and mosapride (0.75 mg/kg) groups using a random number table, 8 rats in each group. Eight rats without the construction of a GERD model were selected as the blank group. Esophageal damage was evaluated through visualization and histopathology evaluation. 5-hydroxytryptamine (5-HT) levels in serum and lower esophageal sphincter (LES) were determined by ELISA. LES contractility was measured with a force transducer, and serotonin transporter (SERT) and 5-HT4R expressions in LES were assessed by RT-PCR, Western blot, and immunofluorescence staining, respectively.
RESULTS:
UPLC-HRMS analysis identified 37 absorption peaks and 157 compounds in BHD. Functional enrichment identified SERT as a significant target for LES contractility. Histopathological findings indicated less severe esophageal mucosal damage in the BHD-H group compared with the model group. Although serum 5-HT levels showed no significant difference, 5-HT concentration in LES tissue was notably higher in the BHD-H group (P<0.05). Within the range from 10-10 to 10-7 mmol/L, LES contractility in the BHD-H and mosapride groups was significantly increased (P<0.05). Within the range from 3 × 10-7 to 3 × 10-6 mmol/L 5-HT, LES contractility in the BHD-H group was increased (P<0.05). No significant difference was detected within the range from 10-5 to 10-4 mmol/L 5-HT. Notably, SERT expression in the BHD-H group assessed by RT-PCR, Western blot, and immunofluorescence staining were significantly lower than that in the model group (all P<0.01); while 5-HT4R expression remained unchanged.
CONCLUSION
BHD may increase LES contractility by inhibiting SERT expression in LES tissue.
Animals
;
Gastroesophageal Reflux/physiopathology*
;
Drugs, Chinese Herbal/chemistry*
;
Rats, Sprague-Dawley
;
Network Pharmacology
;
Male
;
Serotonin/metabolism*
;
Rats
;
Disease Models, Animal
;
Serotonin Plasma Membrane Transport Proteins/metabolism*
;
Esophagus/drug effects*
9.The 5-HT Descending Facilitation System Contributes to the Disinhibition of Spinal PKCγ Neurons and Neuropathic Allodynia via 5-HT2C Receptors.
Xiao ZHANG ; Xiao-Lan HE ; Zhen-Hua JIANG ; Jing QI ; Chen-Chen HUANG ; Jian-Shuai ZHAO ; Nan GU ; Yan LU ; Qun WANG
Neuroscience Bulletin 2025;41(7):1161-1180
Neuropathic pain, often featuring allodynia, imposes significant physical and psychological burdens on patients, with limited treatments due to unclear central mechanisms. Addressing this challenge remains a crucial unsolved issue in pain medicine. Our previous study, using protein kinase C gamma (PKCγ)-tdTomato mice, highlights the spinal feedforward inhibitory circuit involving PKCγ neurons in gating neuropathic allodynia. However, the regulatory mechanisms governing this circuit necessitate further elucidation. We used diverse transgenic mice and advanced techniques to uncover the regulatory role of the descending serotonin (5-HT) facilitation system on spinal PKCγ neurons. Our findings revealed that 5-HT neurons from the rostral ventromedial medulla hyperpolarize spinal inhibitory interneurons via 5-HT2C receptors, disinhibiting the feedforward inhibitory circuit involving PKCγ neurons and exacerbating allodynia. Inhibiting spinal 5-HT2C receptors restored the feedforward inhibitory circuit, effectively preventing neuropathic allodynia. These insights offer promising therapeutic targets for neuropathic allodynia management, emphasizing the potential of spinal 5-HT2C receptors as a novel avenue for intervention.
Animals
;
Neuralgia/physiopathology*
;
Protein Kinase C/metabolism*
;
Receptor, Serotonin, 5-HT2C/metabolism*
;
Hyperalgesia/physiopathology*
;
Mice, Transgenic
;
Mice
;
Spinal Cord/metabolism*
;
Serotonin/metabolism*
;
Male
;
Neurons/metabolism*
;
Mice, Inbred C57BL
10.Targeting 5-HT to Alleviate Dose-Limiting Neurotoxicity in Nab-Paclitaxel-Based Chemotherapy.
Shuangyue PAN ; Yu CAI ; Ronghui LIU ; Shuting JIANG ; Hongyang ZHAO ; Jiahong JIANG ; Zhen LIN ; Qian LIU ; Hongrui LU ; Shuhui LIANG ; Weijiao FAN ; Xiaochen CHEN ; Yejing WU ; Fangqian WANG ; Zheling CHEN ; Ronggui HU ; Liu YANG
Neuroscience Bulletin 2025;41(7):1229-1245
Chemotherapy-induced peripheral neurotoxicity (CIPN) is a severe dose-limiting adverse event of chemotherapy. Presently, the mechanism underlying the induction of CIPN remains unclear, and no effective treatment is available. In this study, through metabolomics analyses, we found that nab-paclitaxel therapy markedly increased serum serotonin [5-hydroxtryptamine (5-HT)] levels in both cancer patients and mice compared to the respective controls. Furthermore, nab-paclitaxel-treated enterochromaffin (EC) cells showed increased 5-HT synthesis, and serotonin-treated Schwann cells showed damage, as indicated by the activation of CREB3L3/MMP3/FAS signaling. Venlafaxine, an inhibitor of serotonin and norepinephrine reuptake, was found to protect against nerve injury by suppressing the activation of CREB3L3/MMP3/FAS signaling in Schwann cells. Remarkably, venlafaxine was found to significantly alleviate nab-paclitaxel-induced CIPN in patients without affecting the clinical efficacy of chemotherapy. In summary, our study reveals that EC cell-derived 5-HT plays a critical role in nab-paclitaxel-related neurotoxic lesions, and venlafaxine co-administration represents a novel approach to treating chronic cumulative neurotoxicity commonly reported in nab-paclitaxel-based chemotherapy.
Paclitaxel/toxicity*
;
Animals
;
Albumins/adverse effects*
;
Serotonin/metabolism*
;
Mice
;
Humans
;
Male
;
Female
;
Venlafaxine Hydrochloride/therapeutic use*
;
Neurotoxicity Syndromes/metabolism*
;
Middle Aged
;
Schwann Cells/metabolism*
;
Peripheral Nervous System Diseases/drug therapy*
;
Antineoplastic Agents

Result Analysis
Print
Save
E-mail