1.Oxidative stress induces autophagy to inhibit the proliferation and apoptosis of human bone marrow mesenchymal stem cells (hBMSCs).
Zhijun LIU ; Shaojin LIU ; Weipeng ZHENG ; Hewei WEI ; Zhihao LIAO ; Sheng CHEN
Chinese Journal of Cellular and Molecular Immunology 2023;39(7):626-632
Objective To investigate the effect of H2O2-induced oxidative stress on autophagy and apoptosis of human bone marrow mesenchymal stem cells (hBMSCs). Methods hBMSCs were isolated and cultured. The cells were divided into control group, 3-MA group, H2O2 group, H2O2 combined with 3-MA group. DCFH-DA staining was used to analyze the level of reactive oxygen species (ROS). hBMSCs were treated with 0, 50, 100, 200, 400 μmol/L H2O2, and then the cell viability was detected by CCK-8 assay. The level of autophagy was detected by monodansylcadaverine (MDC) staining and LysoTracker Red staining. The cell apoptosis was detected by flow cytometry. Western blotting was used to detect the expression of beclin 1, mTOR, phosphorylated mTOR (p-mTOR), cleaved caspase-3(c-caspase-3) and caspase-3 proteins. Results Compared with the control group and 3-MA group, ROS level and autophagosomes were increased and the proliferation and apoptosis were decreased in H2O2 group. The protein expression of beclin 1, mTOR, c-caspase-3 was up-regulated, while the p-mTOR was down-regulated. Compared with the 3-MA group, the H2O2 combined with 3-MA group also had an increased ROS level and autophagosomes, but not with significantly increased apoptosis rate; The protein expression of beclin 1, mTOR, c-caspase-3 was up-regulated, and the p-mTOR was down-regulated. Conclusion H2O2 can induce hMSCs to trigger oxidative stress response. It enhances the autophagy and inhibits the proliferation and apoptosis of hBMSCs.
Humans
;
Beclin-1/metabolism*
;
Caspase 3/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Hydrogen Peroxide/pharmacology*
;
Apoptosis
;
TOR Serine-Threonine Kinases/metabolism*
;
Oxidative Stress
;
Autophagy
;
Mesenchymal Stem Cells/metabolism*
;
Cell Proliferation
2.Baicalin Ameliorates Corticosterone-Induced Depression by Promoting Neurodevelopment of Hippocampal via mTOR/GSK3β Pathway.
Zhe WANG ; Ya-Ting CHENG ; Ye LU ; Guo-Qiang SUN ; Lin PEI
Chinese journal of integrative medicine 2023;29(5):405-412
OBJECTIVE:
To investigate the role of hippocampal neurodevelopment in the antidepressant effect of baicalin.
METHODS:
Forty male Institute of Cancer Research mice were divided into control, corticosterone (CORT, 40 mg/kg), CORT+baicalin-L (25 mg/kg), CORT+baicalin-H (50 mg/kg), and CORT+fluoxetine (10 mg/kg) groups according to a random number table. An animal model of depression was established by chronic CORT exposure. Behavioral tests were used to assess the reliability of depression model and the antidepressant effect of baicalin. In addition, Nissl staining and immunofluorescence were used to evaluate the effect of baicalin on hippocampal neurodevelopment in mice. The protein and mRNA expression levels of neurodevelopment-related factors were detected by Western blot analysis and real-time polymerase chain reaction, respectively.
RESULTS:
Baicalin significantly ameliorated the depressive-like behavior of mice resulting from CORT exposure and promoted the development of dentate gyrus in hippocampus, thereby reversing the depressive-like pathological changes in hippocampal neurons caused by CORT neurotoxicity. Moreover, baicalin significantly decreased the protein and mRNA expression levels of glycogen synthase kinase 3β (GSK3β), and upregulated the expression levels of cell cycle protein D1, p-mammalian target of rapamycin (mTOR), doublecortin, and brain-derived neurotrophic factor (all P<0.01). There were no significant differences between baicalin and fluoxetine groups (P>0.05).
CONCLUSION
Baicalin can promote the development of hippocampal neurons via mTOR/GSK3β signaling pathway, thus protect mice against CORT-induced neurotoxicity and play an antidepressant role.
Male
;
Animals
;
Mice
;
Corticosterone
;
Fluoxetine/metabolism*
;
Depression/chemically induced*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Reproducibility of Results
;
Antidepressive Agents/pharmacology*
;
Hippocampus
;
TOR Serine-Threonine Kinases/metabolism*
;
RNA, Messenger/genetics*
;
Behavior, Animal
;
Disease Models, Animal
;
Mammals/metabolism*
3.Dichloroacetic acid and rapamycin synergistically inhibit tumor progression.
Huan CHEN ; Kunming LIANG ; Cong HOU ; Hai-Long PIAO
Journal of Zhejiang University. Science. B 2023;24(5):397-405
Mammalian target of rapamycin (mTOR) controls cellular anabolism, and mTOR signaling is hyperactive in most cancer cells. As a result, inhibition of mTOR signaling benefits cancer patients. Rapamycin is a US Food and Drug Administration (FDA)-approved drug, a specific mTOR complex 1 (mTORC1) inhibitor, for the treatment of several different types of cancer. However, rapamycin is reported to inhibit cancer growth rather than induce apoptosis. Pyruvate dehydrogenase complex (PDHc) is the gatekeeper for mitochondrial pyruvate oxidation. PDHc inactivation has been observed in a number of cancer cells, and this alteration protects cancer cells from senescence and nicotinamide adenine dinucleotide (NAD+) exhaustion. In this paper, we describe our finding that rapamycin treatment promotes pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1) phosphorylation and leads to PDHc inactivation dependent on mTOR signaling inhibition in cells. This inactivation reduces the sensitivity of cancer cells' response to rapamycin. As a result, rebooting PDHc activity with dichloroacetic acid (DCA), a pyruvate dehydrogenase kinase (PDK) inhibitor, promotes cancer cells' susceptibility to rapamycin treatment in vitro and in vivo.
Humans
;
Sirolimus/pharmacology*
;
Dichloroacetic Acid/pharmacology*
;
Pyruvate Dehydrogenase Complex
;
TOR Serine-Threonine Kinases
;
Mechanistic Target of Rapamycin Complex 1
;
Neoplasms/drug therapy*
4.Doublecortin-like kinase 1 activates Hippo pathway to promote migration, invasion and proliferation of pancreatic cancer cells.
Rui YAN ; Zi Wei LIANG ; He Shu LIU ; Yang GE ; Guang Yu AN
Chinese Journal of Oncology 2023;45(7):594-604
Objective: To explore the mechanism of Doublecortin-like kinase 1 (DCLK1) in promoting cell migration, invasion and proliferation in pancreatic cancer. Methods: The correlation between DCLK1 and Hippo pathway was analyzed using TCGA and GTEx databases and confirmed by fluorescence staining of pancreatic cancer tissue microarrays. At the cellular level, immunofluorescence staining of cell crawls and western blot assays were performed to clarify whether DCLK1 regulates yes associated protein1 (YAP1), a downstream effector of the Hippo pathway. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to analyze the expressions of YAP1 binding transcription factor TEA-DNA binding proteins (TEAD) and downstream malignant behavior-promoting molecules CYR61, EDN1, AREG, and CTGF. Transwell test of the DCLK1-overexpressing cells treated with the Hippo pathway inhibitor Verteporfin was used to examine whether the malignant behavior-promoting ability was blocked. Analysis of changes in the proliferation index of experimental cells used real-time label-free cells. Results: TCGA combined with GTEx data analysis showed that the expressions of DCLK1 and YAP1 molecules in pancreatic cancer tissues were significantly higher than those in adjacent tissues (P<0.05). Moreover, DCLK1was positively correlated with the expressions of many effectors in the Hippo pathway, including LATS1 (r=0.53, P<0.001), LATS2 (r=0.34, P<0.001), MOB1B (r=0.40, P<0.001). In addition, the tissue microarray of pancreatic cancer patients was stained with multicolor fluorescence, indicated that the high expression of DCLK1 in pancreatic cancer patients was accompanied by the up-regulated expression of YAP1. The expression of DCLK1 in pancreatic cancer cell lines was analyzed by the CCLE database. The results showed that the expression of DCLK1 in AsPC-1 and PANC-1 cells was low. Thus, we overexpressed DCLK1 in AsPC-1 and PANC-1 cell lines and found that DCLK1 overexpression in pancreatic cancer cell lines promoted YAP1 expression and accessible to the nucleus. In addition, DCLK1 up-regulated the expression of YAP1 binding transcription factor TEAD and increased the mRNA expression levels of downstream malignant behavior-promoting molecules. Finally, Verteporfin, an inhibitor of the Hippo pathway, could antagonize the cell's malignant behavior-promoting ability mediated by high expression of DCLK1. We found that the number of migrated cells with DCLK1 overexpressing AsPC-1 group was 68.33±7.09, which was significantly higher than 22.00±4.58 of DCLK1 overexpressing cells treated with Verteporfin (P<0.05). Similarly, the migration number of PANC-1 cells overexpressing DCLK1 was 65.66±8.73, which was significantly higher than 37.00±6.00 of the control group and 32.33±9.61 of Hippo pathway inhibitor-treated group (P<0.05). Meanwhile, the number of invasive cells in the DCLK1-overexpressed group was significantly higher than that in the DCLK1 wild-type group cells, while the Verteporfin-treated DCLK1-overexpressed cells showed a significant decrease. In addition, we monitored the cell proliferation index using the real-time cellular analysis (RTCA) assay, and the proliferation index of DCLK1-overexpressed AsPC-1 cells was 0.66±0.04, which was significantly higher than 0.38±0.01 of DCLK1 wild-type AsPC-1 cells (P<0.05) as well as 0.05±0.03 of DCLK1-overexpressed AsPC1 cells treated with Verteporfin (P<0.05). PANC-1 cells showed the same pattern, with a proliferation index of 0.77±0.04 for DCLK1-overexpressed PANC-1 cells, significantly higher than DCLK1-overexpressed PANC1 cells after Verteporfin treatment (0.14±0.05, P<0.05). Conclusion: The expression of DCLK1 is remarkably associated with the Hippo pathway, it promotes the migration, invasion, and proliferation of pancreatic cancer cells by activating the Hippo pathway.
Humans
;
Doublecortin-Like Kinases
;
Hippo Signaling Pathway
;
Verteporfin/pharmacology*
;
Cell Line, Tumor
;
Protein Serine-Threonine Kinases/metabolism*
;
Pancreatic Neoplasms/pathology*
;
YAP-Signaling Proteins
;
Transcription Factors/metabolism*
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
;
Tumor Suppressor Proteins/genetics*
5.Effect and Mechanism of Atorvastatin on Reversing Drug Resistance in Leukemia by Regulating Glycolysis through PTEN/mTOR Pathway.
Journal of Experimental Hematology 2023;31(1):38-44
OBJECTIVE:
To investigate the influence and mechanism of atorvastatin on glycolysis of adriamycin resistant acute promyelocytic leukemia (APL) cell line HL-60/ADM.
METHODS:
HL-60/ADM cells in logarithmic growth phase were treated with different concentrations of atorvastatin, then the cell proliferation activity was measured by CCK-8 assay, the apoptosis was detected by flow cytometry, the glycolytic activity was checked by glucose consumption test, and the protein expressions of PTEN, p-mTOR, PKM2, HK2, P-gp and MRP1 were detected by Western blot. After transfection of PTEN-siRNA into HL-60/ADM cells, the effects of low expression of PTEN on atorvastatin regulating the behaviors of apoptosis and glycolytic metabolism in HL-60/ADM cells were further detected.
RESULTS:
CCK-8 results showed that atorvastatin could inhibit the proliferation of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.872, r=0.936), and the proliferation activity was inhibited most significantly when treated with 10 μmol/L atorvastatin for 24 h, which was decreased to (32.3±2.18)%. Flow cytometry results showed that atorvastatin induced the apoptosis of HL-60/ADM cells in a concentration-dependent manner (r=0.796), and the apoptosis was induced most notably when treated with 10 μmol/L atorvastatin for 24 h, which reached to (48.78±2.95)%. The results of glucose consumption test showed that atorvastatin significantly inhibited the glycolytic activity of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.915, r=0.748), and this inhibition was most strikingly when treated with 10 μmol/L atorvastatin for 24 h, reducing the relative glucose consumption to (46.53±1.71)%. Western blot indicated that the expressions of p-mTOR, PKM2, HK2, P-gp and MRP1 protein were decreased in a concentration-dependent manner (r=0.737, r=0.695, r=0.829, r=0.781, r=0.632), while the expression of PTEN protein was increased in a concentration-dependent manner (r=0.531), when treated with different concentrations of atorvastatin for 24 h. After PTEN-siRNA transfected into HL-60/ADM cells, it showed that low expression of PTEN had weakened the promoting effect of atorvastatin on apoptosis and inhibitory effect on glycolysis and multidrug resistance.
CONCLUSION
Atorvastatin can inhibit the proliferation, glycolysis, and induce apoptosis of HL-60/ADM cells. It may be related to the mechanism of increasing the expression of PTEN, inhibiting mTOR activation, and decreasing the expressions of PKM2 and HK2, thus reverse drug resistance.
Humans
;
Atorvastatin/pharmacology*
;
PTEN Phosphohydrolase/pharmacology*
;
Sincalide/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
TOR Serine-Threonine Kinases/metabolism*
;
Leukemia, Promyelocytic, Acute/drug therapy*
;
Doxorubicin/pharmacology*
;
Apoptosis
;
RNA, Small Interfering/pharmacology*
;
Glycolysis
;
Glucose/therapeutic use*
;
Cell Proliferation
6.Synergistic Antitumor Effect of Everolimus Combined with Gemcitabine on Diffuse Large B-Cell Lymphoma.
Xiu-Qin ZUO ; Chun-Lian TAN ; Xiao-Ming LI ; Tao MA
Journal of Experimental Hematology 2023;31(1):81-88
OBJECTIVE:
To investigate the effects of mTOR inhibitors everolimus (EVE) and gemcitabine (GEM) on the proliferation, apoptosis and cell cycle of diffuse large B-cell lymphoma (DLBCL) cell line U2932, and further explore the molecular mechanisms, so as to provide new ideas and experimental basis for the clinical treatment of DLBCL.
METHODS:
The effect of EVE and GEM on the proliferation of U2932 cells was detected by CCK-8 assay, the IC50 of the two drugs was calculated, and the combination index (CI=) of the two drugs was calculated by CompuSyn software. The effect of EVE and GEM on apoptosis of U2932 cells was detected by flow cytometry with AnnexinV-FITC/PI staining. Flow cytometry with propidium iodide (PI) staining was used to detect the effect of EVE and GEM on the cell cycle of U2932 cells. Western blot assay was used to detect the effects of EVE and GEM on the channel proteins p-mTOR and p-4EBP1, the anti-apoptotic proteins MCL-1 and Survivin, and the cell cycle protein Cyclin D1.
RESULTS:
Both EVE and GEM could significantly inhitbit the proliferation of U2932 cells in a time- and dose-dependent manner (r=0.465, 0.848; 0.555, 0.796). According to the calculation of CompuSyn software, EVE combined with GEM inhibited the proliferation of U2932 cells at 24, 48 and 72 h with CI=<1, which had a synergistic effect. After treated U2932 cells with 10 nmol/L EVE, 250 nmol/L GEM alone and in combination for 48 h, both EVE and GEM induced apoptosis, and the difference was statistically significant compared with the control group (P<0.05). The apoptosis rate was significantly enhanced after EVE in combination with GEM compared with single-agent (P<0.05). Both EVE and GEM alone and in combination significantly increased the proportion of cells in G1 phase compared with the control group (P<0.05). The proportion of cells in G1 phase was significantly increased when the two drugs were combined (P<0.05). The expression of p-mTOR and effector protein p-4EBP1 was significantly downregulated in the EVE combined with GEM group, the expression of anti-apoptotic proteins MCL-1, Survivin and cell cycle protein cyclin D1 was downregulated too (P<0.05).
CONCLUSION
EVE combined with GEM can synergistically inhibit the proliferation of U2932 cells, and the mechanism may be that they can synergistically induce apoptosis by downregulating the expression of MCL-1 and Survivin proteins and block the cell cycle progression by downregulating the expression of Cyclin D1.
Humans
;
Gemcitabine
;
Everolimus/pharmacology*
;
Survivin/pharmacology*
;
Cyclin D1/pharmacology*
;
Myeloid Cell Leukemia Sequence 1 Protein
;
Cell Line, Tumor
;
Cell Proliferation
;
TOR Serine-Threonine Kinases
;
Apoptosis
;
Apoptosis Regulatory Proteins
;
Cell Cycle Proteins
;
Lymphoma, Large B-Cell, Diffuse
7.In vitro and in vivo anticancer potential and molecular targets of the new colchicine analog IIIM-067.
Sumera MALIK ; Mubashir J MINTOO ; Chilakala Nagarjuna REDDY ; Rajesh KUMAR ; Pankul KOTWAL ; Sandip B BHARATE ; Utpal NANDI ; Dilip M MONDHE ; Sanket K SHUKLA
Journal of Integrative Medicine 2023;21(1):62-76
OBJECTIVE:
The current study evaluated various new colchicine analogs for their anticancer activity and to study the primary mechanism of apoptosis and in vivo antitumor activity of the analogs with selective anticancer properties and minimal toxicity to normal cells.
METHODS:
Sulforhodamine B (SRB) assay was used to screen various colchicine analogs for their in vitro cytotoxicity. The effect of N-[(7S)-1,2,3-trimethoxy-9-oxo-10-(pyrrolidine-1-yl)5,6,7,9-tetrahydrobenzo[a] heptalene-7-yl] acetamide (IIIM-067) on clonogenicity, apoptotic induction, and invasiveness of A549 cells was determined using a clonogenic assay, scratch assay, and staining with 4',6-diamidino-2-phenylindole (DAPI) and annexin V/propidium iodide. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels were observed using fluorescence microscopy. Western blot analysis was used to quantify expression of proteins involved in apoptosis, cell cycle, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling. Pharmacokinetic and in vivo efficacy studies against Ehrlich ascites carcinoma (EAC) and Ehrlich solid tumor models were conducted using Swiss albino mice.
RESULTS:
IIIM-067 showed potent cytotoxicity and better selectivity than all other colchicine analogs screened in this study. The selective activity of IIIM-067 toward A549 cells was higher among other cancer cell lines, with a selectivity index (SI) value of 2.28. IIIM-067 demonstrated concentration- and time-dependent cytotoxicity against A549 cells with half-maximal inhibitory concentration values of 0.207, 0.150 and 0.106 μmol/L at 24, 48 and 72 h, respectively. It also had reduced toxicity to normal cells (SI > 1) than the parent compound colchicine (SI = 1). IIIM-067 reduced the clonogenic ability of A549 cells in a dose-dependent manner. IIIM-067 enhanced ROS production from 24.6% at 0.05 μmol/L to 82.1% at 0.4 μmol/L and substantially decreased the MMP (100% in control to 5.6% at 0.4 μmol/L). The annexin V-FITC assay demonstrated 78% apoptosis at 0.4 μmol/L. IIIM-067 significantly (P < 0.5) induced the expression of various intrinsic apoptotic pathway proteins, and it differentially regulated the PI3K/AKT/mTOR signaling pathway. Furthermore, IIIM-067 exhibited remarkable in vivo anticancer activity against the murine EAC model, with tumor growth inhibition (TGI) of 67.0% at a dose of 6 mg/kg (i.p.) and a reduced mortality compared to colchicine. IIIM-067 also effectively inhibited the tumor growth in the murine solid tumor model with TGI rates of 48.10%, 55.68% and 44.00% at doses of 5 mg/kg (i.p.), 6 mg/kg (i.p.) and 7 mg/kg (p.o.), respectively.
CONCLUSION
IIIM-067 exhibited significant anticancer activity with reduced toxicity both in vitro and in vivo and is a promising anticancer candidate. However, further studies are required in clinical settings to fully understand its potential.
Animals
;
Mice
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Antineoplastic Agents, Phytogenic/pharmacology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Reactive Oxygen Species/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Colchicine/pharmacology*
;
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Mammals/metabolism*
8.Junctional adhesion molecule-like protein as a novel target for kaempferol to ameliorate lung adenocarcinoma.
Qian WU ; Yong-Bin WANG ; Xiao-Wen CHE ; Hui WANG ; Wei WANG
Journal of Integrative Medicine 2023;21(3):268-276
OBJECTIVE:
Although there have been improvements in targeted therapy and immunotherapy, the majority of lung adenocarcinoma (LUAD) patients still lack effective therapies. Consequently, it is urgent to screen for new diagnosis biomarkers and pharmacological targets. Junctional adhesion molecule-like protein (JAML) was considered to be an oncogenic protein and may be a novel therapeutic target in LUAD. Kaempferol is a natural flavonoid that exhibits antitumor activities in LUAD. However, the effect of kaempferol on JAML is still unknown.
METHODS:
Small interfering RNA was used to knockdown JAML expression. The cell viability was determined using the cell counting kit-8 assay. The proliferation of LUAD cells was evaluated using the 5-ethynyl-2'-deoxyuridine incorporation assay. The migration and invasion of LUAD cells were evaluated by transwell assays. Molecular mechanisms were explored by Western blotting.
RESULTS:
JAML knockdown suppressed proliferation, migration and invasion of LUAD cells, and JAML deficiency restrained epithelial-mesenchymal transition (EMT) via inactivating the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Using a PI3K activator (740Y-P), rescue experiments showed that phenotypes to JAML knockdown in LUAD cells were dependent on the PI3K/AKT/mTOR pathway. Kaempferol also inhibited proliferation, migration and invasion of A549 and H1299 cells and partially suppressed EMT through the PI3K/AKT/mTOR pathway. Knockdown of JAML ameliorated the inhibitory effect of kaempferol on LUAD cells. Kaempferol exerted anticancer effects by targeting JAML.
CONCLUSION
JAML is a novel target for kaempferol against LUAD cells. Please cite this article as: Wu Q, Wang YB, Che XW, Wang H, Wang W. Junctional adhesion molecule-like protein as a novel target for kaempferol to ameliorate lung adenocarcinoma. J Integr Med. 2023; 21(3): 268-276.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Junctional Adhesion Molecules/metabolism*
;
Kaempferols/pharmacology*
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Adenocarcinoma of Lung/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Lung Neoplasms/metabolism*
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
9.Psilocybin facilitates fear extinction in mice by promoting hippocampal neuroplasticity.
Yingjie DU ; Yunfeng LI ; Xiangting ZHAO ; Yishan YAO ; Bin WANG ; Liming ZHANG ; Guyan WANG
Chinese Medical Journal 2023;136(24):2983-2992
BACKGROUND:
Posttraumatic stress disorder (PTSD) and depression are highly comorbid. Psilocybin exerts substantial therapeutic effects on depression by promoting neuroplasticity. Fear extinction is a key process in the mechanism of first-line exposure-based therapies for PTSD. We hypothesized that psilocybin would facilitate fear extinction by promoting hippocampal neuroplasticity.
METHODS:
First, we assessed the effects of psilocybin on percentage of freezing time in an auditory cued fear conditioning (FC) and fear extinction paradigm in mice. Psilocybin was administered 30 min before extinction training. Fear extinction testing was performed on the first day; fear extinction retrieval and fear renewal were tested on the sixth and seventh days, respectively. Furthermore, we verified the effect of psilocybin on hippocampal neuroplasticity using Golgi staining for the dendritic complexity and spine density, Western blotting for the protein levels of brain derived neurotrophic factor (BDNF) and mechanistic target of rapamycin (mTOR), and immunofluorescence staining for the numbers of doublecortin (DCX)- and bromodeoxyuridine (BrdU)-positive cells.
RESULTS:
A single dose of psilocybin (2.5 mg/kg, i.p.) reduced the increase in the percentage of freezing time induced by FC at 24 h, 6th day and 7th day after administration. In terms of structural neuroplasticity, psilocybin rescued the decrease in hippocampal dendritic complexity and spine density induced by FC; in terms of neuroplasticity related proteins, psilocybin rescued the decrease in the protein levels of hippocampal BDNF and mTOR induced by FC; in terms of neurogenesis, psilocybin rescued the decrease in the numbers of DCX- and BrdU-positive cells in the hippocampal dentate gyrus induced by FC.
CONCLUSIONS
A single dose of psilocybin facilitated rapid and sustained fear extinction; this effect might be partially mediated by the promotion of hippocampal neuroplasticity. This study indicates that psilocybin may be a useful adjunct to exposure-based therapies for PTSD and other mental disorders characterized by failure of fear extinction.
Humans
;
Mice
;
Animals
;
Psilocybin/metabolism*
;
Fear
;
Extinction, Psychological
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Bromodeoxyuridine/pharmacology*
;
Hippocampus/metabolism*
;
Neuronal Plasticity
;
TOR Serine-Threonine Kinases/metabolism*
10.Bis (2-butoxyethyl) Phthalate Delays Puberty Onset by Increasing Oxidative Stress and Apoptosis in Leydig Cells in Rats.
Miao Qing LIU ; Hai Qiong CHEN ; Hai Peng DAI ; Jing Jing LI ; Fu Hong TIAN ; Yi Yan WANG ; Cong De CHEN ; Xiao Heng LI ; Jun Wei LI ; Zhong Rong LI ; Ren Shan GE
Biomedical and Environmental Sciences 2023;36(1):60-75
OBJECTIVE:
This study investigated the effects of bis (2-butoxyethyl) phthalate (BBOP) on the onset of male puberty by affecting Leydig cell development in rats.
METHODS:
Thirty 35-day-old male Sprague-Dawley rats were randomly allocated to five groups mg/kg bw per day that were gavaged for 21 days with BBOP at 0, 10, 100, 250, or 500 mg/kg bw per day. The hormone profiles; Leydig cell morphological metrics; mRNA and protein levels; oxidative stress; and AKT, mTOR, ERK1/2, and GSK3β pathways were assessed.
RESULTS:
BBOP at 250 and/or 500 mg/kg bw per day decreased serum testosterone, luteinizing hormone, and follicle-stimulating hormone levels mg/kg bw per day (P < 0.05). BBOP at 500 mg/kg bw per day decreased Leydig cell number mg/kg bw per day and downregulated Cyp11a1, Insl3, Hsd11b1, and Dhh in the testes, and Lhb and Fshb mRNAs in the pituitary gland (P < 0.05). The malondialdehyde content in the testis significantly increased, while Sod1 and Sod2 mRNAs were markedly down-regulated, by BBOP treatment at 250-500 mg/kg bw per day (P < 0.05). Furthermore, BBOP at 500 mg/kg bw per day decreased AKT1/AKT2, mTOR, and ERK1/2 phosphorylation, and GSK3β and SIRT1 levels mg/kg bw per day (P < 0.05). Finally, BBOP at 100 or 500 μmol/L induced ROS and apoptosis in Leydig cells after 24 h of treatment in vitro (P < 0.05).
CONCLUSION:
BBOP delays puberty onset by increasing oxidative stress and apoptosis in Leydig cells in rats.
UNLABELLED
The graphical abstract is available on the website www.besjournal.com.
Rats
;
Male
;
Animals
;
Leydig Cells/metabolism*
;
Testosterone
;
Glycogen Synthase Kinase 3 beta/pharmacology*
;
Rats, Sprague-Dawley
;
Sexual Maturation
;
Testis
;
Oxidative Stress
;
TOR Serine-Threonine Kinases/metabolism*
;
Apoptosis

Result Analysis
Print
Save
E-mail