1.Circulating tumor DNA- and cancer tissue-based next-generation sequencing reveals comparable consistency in targeted gene mutations for advanced or metastatic non-small cell lung cancer.
Weijia HUANG ; Kai XU ; Zhenkun LIU ; Yifeng WANG ; Zijia CHEN ; Yanyun GAO ; Renwang PENG ; Qinghua ZHOU
Chinese Medical Journal 2025;138(7):851-858
BACKGROUND:
Molecular subtyping is an essential complementarity after pathological analyses for targeted therapy. This study aimed to investigate the consistency of next-generation sequencing (NGS) results between circulating tumor DNA (ctDNA)-based and tissue-based in non-small cell lung cancer (NSCLC) and identify the patient characteristics that favor ctDNA testing.
METHODS:
Patients who diagnosed with NSCLC and received both ctDNA- and cancer tissue-based NGS before surgery or systemic treatment in Lung Cancer Center, Sichuan University West China Hospital between December 2017 and August 2022 were enrolled. A 425-cancer panel with a HiSeq 4000 NGS platform was used for NGS. The unweighted Cohen's kappa coefficient was employed to discriminate the high-concordance group from the low-concordance group with a cutoff value of 0.6. Six machine learning models were used to identify patient characteristics that relate to high concordance between ctDNA-based and tissue-based NGS.
RESULTS:
A total of 85 patients were enrolled, of which 22.4% (19/85) had stage III disease and 56.5% (48/85) had stage IV disease. Forty-four patients (51.8%) showed consistent gene mutation types between ctDNA-based and tissue-based NGS, while one patient (1.2%) tested negative in both approaches. Patients with advanced diseases and metastases to other organs would be suitable for the ctDNA-based NGS, and the generalized linear model showed that T stage, M stage, and tumor mutation burden were the critical discriminators to predict the consistency of results between ctDNA-based and tissue-based NGS.
CONCLUSION
ctDNA-based NGS showed comparable detection performance in the targeted gene mutations compared with tissue-based NGS, and it could be considered in advanced or metastatic NSCLC.
Humans
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Circulating Tumor DNA/blood*
;
High-Throughput Nucleotide Sequencing/methods*
;
Female
;
Male
;
Lung Neoplasms/pathology*
;
Middle Aged
;
Mutation/genetics*
;
Aged
;
Adult
;
Aged, 80 and over
2.Single-cell RNA sequencing in tuberculosis: Application and future perspectives.
Yuejuan ZHAN ; Qiran ZHANG ; Wenyang WANG ; Wenyi LIANG ; Chengdi WANG
Chinese Medical Journal 2025;138(14):1676-1686
Tuberculosis (TB) has one of the highest mortality rates among infectious diseases worldwide. The immune response in the host after infection is proposed to contribute significantly to the progression of TB, but the specific mechanisms involved remain to be elucidated. Single-cell RNA sequencing (scRNA-seq) provides unbiased transcriptome sequencing of large quantities of individual cells, thereby defining biological comprehension of cellular heterogeneity and dynamic transcriptome state of cell populations in the field of immunology and is therefore increasingly applied to lung disease research. Here, we first briefly introduce the concept of scRNA-seq, followed by a summarization on the application of scRNA-seq to TB. Furthermore, we underscore the potential of scRNA-seq for clinical biomarker exploration, host-directed therapy, and precision therapy research in TB and discuss the bottlenecks that need to be overcome for the broad application of scRNA-seq to TB-related research.
Humans
;
Single-Cell Analysis/methods*
;
Tuberculosis/genetics*
;
Sequence Analysis, RNA/methods*
;
Transcriptome/genetics*
3.Decoding the genetic and environmental forces in propelling the surge of early-onset colorectal cancer.
Jianhui ZHAO ; Haosen JI ; Kangning LI ; Guirong YU ; Siyun ZHOU ; Qian XIAO ; Malcolm DUNLOP ; Evropi THEODORATOU ; Xue LI ; Kefeng DING
Chinese Medical Journal 2025;138(10):1163-1174
Early-onset colorectal cancer (EOCRC) shows a different epidemiological trend compared to later-onset colorectal cancer, with its incidence rising in most regions and countries worldwide. However, the reasons behind this trend remain unclear. The etiology of EOCRC is complex and could involve both genetic and environmental factors. Apart from Lynch syndrome and Familial Adenomatous Polyposis, sporadic EOCRC exhibits a broad spectrum of pathogenic germline mutations, genetic polymorphisms, methylation changes, and chromosomal instability. Early-life exposures and environmental risk factors, including lifestyle and dietary risk factors, have been found to be associated with EOCRC risk. Meanwhile, specific chronic diseases, such as inflammatory bowel disease, diabetes, and metabolic syndrome, have been associated with EOCRC. Interactions between genetic and environmental risk factors in EOCRC have also been explored. Here we present findings from a narrative review of epidemiological studies on the assessment of early-life exposures, of EOCRC-specific environmental factors, and their interactions with susceptible loci. We also present results from EOCRC-specific genome-wide association studies that could be used to perform Mendelian randomization analyses to ascertain potential causal links between environmental factors and EOCRC.
Humans
;
Colorectal Neoplasms/etiology*
;
Risk Factors
;
Genome-Wide Association Study
;
Genetic Predisposition to Disease/genetics*
4.Decoding the immune microenvironment of secondary chronic myelomonocytic leukemia due to diffuse large B-cell lymphoma with CD19 CAR-T failure by single-cell RNA-sequencing.
Xudong LI ; Hong HUANG ; Fang WANG ; Mengjia LI ; Binglei ZHANG ; Jianxiang SHI ; Yuke LIU ; Mengya GAO ; Mingxia SUN ; Haixia CAO ; Danfeng ZHANG ; Na SHEN ; Weijie CAO ; Zhilei BIAN ; Haizhou XING ; Wei LI ; Linping XU ; Shiyu ZUO ; Yongping SONG
Chinese Medical Journal 2025;138(15):1866-1881
BACKGROUND:
Several studies have demonstrated the occurrence of secondary tumors as a rare but significant complication of chimeric antigen receptor T (CAR-T) cell therapy, underscoring the need for a detailed investigation. Given the limited variety of secondary tumor types reported to date, a comprehensive characterization of the various secondary tumors arising after CAR-T therapy is essential to understand the associated risks and to define the role of the immune microenvironment in malignant transformation. This study aims to characterize the immune microenvironment of a newly identified secondary tumor post-CAR-T therapy, to clarify its pathogenesis and potential therapeutic targets.
METHODS:
In this study, the bone marrow (BM) samples were collected by aspiration from the primary and secondary tumors before and after CD19 CAR-T treatment. The CD45 + BM cells were enriched with human CD45 microbeads. The CD45 + cells were then sent for 10× genomics single-cell RNA sequencing (scRNA-seq) to identify cell populations. The Cell Ranger pipeline and CellChat were used for detailed analysis.
RESULTS:
In this study, a rare type of secondary chronic myelomonocytic leukemia (CMML) were reported in a patient with diffuse large B-cell lymphoma (DLBCL) who had previously received CD19 CAR-T therapy. The scRNA-seq analysis revealed increased inflammatory cytokines, chemokines, and an immunosuppressive state of monocytes/macrophages, which may impair cytotoxic activity in both T and natural killer (NK) cells in secondary CMML before treatment. In contrast, their cytotoxicity was restored in secondary CMML after treatment.
CONCLUSIONS
This finding delineates a previously unrecognized type of secondary tumor, CMML, after CAR-T therapy and provide a framework for defining the immune microenvironment of secondary tumor occurrence after CAR-T therapy. In addition, the results provide a rationale for targeting macrophages to improve treatment strategies for CMML treatment.
Humans
;
Lymphoma, Large B-Cell, Diffuse/therapy*
;
Tumor Microenvironment/genetics*
;
Antigens, CD19/metabolism*
;
Leukemia, Myelomonocytic, Chronic/genetics*
;
Immunotherapy, Adoptive/adverse effects*
;
Male
;
Single-Cell Analysis/methods*
;
Female
;
Sequence Analysis, RNA/methods*
;
Receptors, Chimeric Antigen
;
Middle Aged
5.Neoantigen-driven personalized tumor therapy: An update from discovery to clinical application.
Na XIE ; Guobo SHEN ; Canhua HUANG ; Huili ZHU
Chinese Medical Journal 2025;138(17):2057-2090
Neoantigens exhibit high immunogenic potential and confer a uniqueness to tumor cells, making them ideal targets for personalized cancer immunotherapy. Neoantigens originate from tumor-specific genetic alterations, abnormal viral infections, or other biological mechanisms, including atypical RNA splicing events and post-translational modifications (PTMs). These neoantigens are recognized as foreign by the immune system, eliciting an immune response that largely bypasses conventional mechanisms of central and peripheral tolerance. Advances in next-generation sequencing (NGS), mass spectrometry (MS), and artificial intelligence (AI) have greatly expedited the rapid detection and forecasting of neoantigens, markedly propelling the development of diverse immunotherapeutic strategies, including cancer vaccines, adoptive cell therapy, and antibody treatment. In this review, we comprehensively explore the discovery and characterization of neoantigens and their clinical use within promising immunotherapeutic frameworks. Additionally, we address the current landscape of neoantigen research, the intrinsic challenges of the field, and potential pathways for clinical application in cancer treatment.
Humans
;
Neoplasms/therapy*
;
Precision Medicine/methods*
;
Immunotherapy/methods*
;
Antigens, Neoplasm/genetics*
;
Cancer Vaccines/immunology*
;
High-Throughput Nucleotide Sequencing
6.Specific RNA transcripts (SRTs): From concepts to the clinic.
Qili SHI ; Haochen LI ; Zhiao CHEN ; Xianghuo HE
Chinese Medical Journal 2025;138(22):2895-2906
Over the past decade, high-throughput RNA sequencing (RNA-seq) has vastly expanded our understanding of transcriptome dynamics in human physiology and disease. As a powerful tool for investigating systematic changes in RNA biology, RNA-seq has facilitated the discovery of novel functional RNA species. Mature RNA transcripts, which transmit genetic information from DNA to proteins, undergo intricate transcriptional and post-transcriptional regulation. This process allows a single gene to produce multiple RNA transcripts, each performing specific functions depending on the physiological or pathological context. Specific RNA transcripts (SRTs) are uniquely expressed in particular tissues or tumors and are closely associated with tissue-specific functions or disease states, particularly cancer. This review explores the generation of SRTs through key mechanisms, such as alternative splicing (AS), transcriptional regulation, polyadenylation (polyA), and the influence of transposable elements (TEs). We also examine their critical roles in normal tissue development and diseases, with an emphasis on their relevance to cancer. Furthermore, the potential applications of SRTs in diagnosing and treating diseases, especially malignancies, are discussed. By serving as diagnostic markers and therapeutic targets, SRTs hold significant promise in the development of personalized medicine and precision therapies. This review aims to provide new insights into the importance of SRTs in advancing the understanding and treatment of human diseases.
Humans
;
Neoplasms/genetics*
;
Alternative Splicing/genetics*
;
RNA/genetics*
;
Animals
;
Sequence Analysis, RNA/methods*
;
Polyadenylation/genetics*
7.Transcriptomic analysis of key genes involved in sex differences in intellectual development.
Jia-Wei ZHANG ; Xiao-Li ZHENG ; Hai-Qian ZHOU ; Zhen ZHU ; Wei HAN ; Dong-Min YIN
Acta Physiologica Sinica 2025;77(2):211-221
Intelligence encompasses various abilities, including logical reasoning, comprehension, self-awareness, learning, planning, creativity, and problem-solving. Extensive research and practical experience suggest that there are sex differences in intellectual development, with females typically maturing earlier than males. However, the key genes and molecular network mechanisms underlying these sex differences in intellectual development remain unclear. To date, Genome-Wide Association Studies (GWAS) have identified 507 genes that are significantly associated with intelligence. This study first analyzed RNA sequencing data from different stages of brain development (from BrainSpan), revealing that during the late embryonic stage, the average expression levels of intelligence-related genes are higher in males than in females, while the opposite is observed during puberty. This study further constructed interaction networks of intelligence-related genes with sex-differential expression in the brain, including the prenatal male network (HELP-M: intelligence genes with higher expression levels in prenatal males) and the pubertal female network (HELP-F: intelligence genes with higher expression levels in pubertal females). The findings indicate that the key genes in both networks are Ep300 and Ctnnb1. Specifically, Ep300 regulates the transcription of 53 genes in both HELP-M and HELP-F, while Ctnnb1 regulates the transcription of 45 genes. Ctnnb1 plays a more prominent role in HELP-M, while Ep300 is more crucial in HELP-F. Finally, this study conducted sequencing validation on rats at different developmental stages, and the results indicated that in the prefrontal cortex of female rats during adolescence, the expression levels of the intelligence genes in HELP-F, as well as key genes Ep300 and Ctnnb1, were higher than those in male rats. These genes were also involved in neurodevelopment-related biological processes. The findings reveal a sex-differentiated intelligence gene network and its key genes, which exhibit varying expression levels during the neurodevelopmental process.
Female
;
Intelligence/physiology*
;
Male
;
Sex Characteristics
;
Animals
;
Brain/growth & development*
;
E1A-Associated p300 Protein/physiology*
;
beta Catenin/physiology*
;
Transcriptome
;
Rats
;
Gene Expression Profiling
;
Genome-Wide Association Study
10.Mechanism of Daotan Xixin Decoction in treating APP/PS1 mice based on high-throughput sequencing technology and bioinformatics analysis.
Bo-Lun CHEN ; Jian-Zheng LU ; Xin-Mei ZHOU ; Xiao-Dong WEN ; Yuan-Jing JIANG ; Ning LUO
China Journal of Chinese Materia Medica 2025;50(2):301-313
This study aims to investigate the therapeutic effect and mechanism of Daotan Xixin Decoction on APP/PS1 mice. Twelve APP/PS1 male mice were randomized into four groups: APP/PS1 and low-, medium-, and high-dose Daotan Xixin Decoction. Three C57BL/6 wild-type mice were used as the control group. The learning and memory abilities of mice in each group were examined by the Morris water maze test. The pathological changes of hippocampal nerve cells were observed by hematoxylin-eosin staining and Nissl staining. Immunohistochemistry was employed to detect the expression of β-amyloid(Aβ)_(1-42) in the hippocampal tissue. The high-dose Daotan Xixin Decoction group with significant therapeutic effects and the model group were selected for high-throughput sequencing. The differentially expressed gene(DEG) analysis, Gene Ontology(GO) analysis, Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis, and Gene Set Variation Analysis(GSVA) were performed on the sequencing results. RT-qPCR and Western blot were conducted to determine the mRNA and protein levels, respectively, of some DEGs. Compared with the APP/PS1 group, Daotan Xixin Decoction at different doses significantly improved the learning and memory abilities of APP/PS1 mice, ameliorated the neuropathological damage in the CA1 region of the hippocampus, increased the number of neurons, and decreased the deposition of Aβ_(1-42) in the brain. A total of 1 240 DEGs were screened out, including 634 genes with up-regulated expression and 606 genes with down-regulated expression. The GO analysis predicted the biological processes including RNA splicing and protein folding, the cellular components including spliceosome complexes and nuclear spots, and the molecular functions including unfolded protein binding and heat shock protein binding. The KEGG pathway enrichment analysis revealed the involvement of neurodegenerative disease pathways, amyotrophic lateral sclerosis, and splicing complexes. Further GSVA pathway enrichment analysis showed that the down-regulated pathways involved nuclear factor-κB(NF-κB)-mediated tumor necrosis factor-α(TNF-α) signaling pathway, UV response, and unfolded protein response, while the up-regulated pathways involved the Wnt/β-catenin signaling pathway. The results of RT-qPCR and Western blot showed that compared with the APP/PS1 group, Daotan Xixin Decoction at different doses down-regulated the mRNA and protein levels of signal transducer and activator of transcription 3(STAT3), NF-κB, and interleukin-6(IL-6) in the hippocampus. In conclusion, Daotan Xixin Decoction can improve the learning and memory abilities of APP/PS1 mice by regulating the STAT3/NF-κB/IL-6 signaling pathway.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Male
;
Alzheimer Disease/metabolism*
;
Computational Biology
;
Mice, Inbred C57BL
;
High-Throughput Nucleotide Sequencing
;
Amyloid beta-Protein Precursor/metabolism*
;
Hippocampus/metabolism*
;
Mice, Transgenic
;
Presenilin-1/metabolism*
;
Humans
;
Memory/drug effects*
;
Maze Learning/drug effects*
;
Amyloid beta-Peptides/genetics*
;
Disease Models, Animal

Result Analysis
Print
Save
E-mail