1.Molecular modification and highly efficient expression of L-asparaginase from Rhizomucor miehei.
Manchi ZHU ; Xian ZHANG ; Zhi WANG ; Wenxuan LIN ; Meijuan XU ; Taowei YANG ; Minglong SHAO ; Zhiming RAO
Chinese Journal of Biotechnology 2021;37(9):3242-3252
L-asparaginase hydrolyzes L-asparagine to produce L-aspartic acid and ammonia. It is widely distributed in microorganisms, plants and serum of some rodents, and has important applications in the pharmaceutical and food industries. However, the poor thermal stability, low catalytic efficiency and low yield hampered the further application of L-asparaginase. In this paper, rational design and 5' untranslated region (5'UTR) design strategies were used to increase the specific enzyme activity and protein expression of L-asparaginase derived from Rhizomucor miehei (RmAsnase). The results showed that among the six mutants constructed through homology modeling combined with sequence alignment, the specific enzyme activity of the mutant A344E was 1.5 times higher than the wild type. Subsequently, a food-safe strain Bacillus subtilis 168/pMA5-A344E was constructed, and the UTR strategy was used for the construction of recombinant strain B. subtilis 168/pMA5 UTR-A344E. The enzyme activity of B. subtilis 168/pMA5 UTR-A344E was 7.2 times higher than that of B. subtilis 168/pMA5-A344E. The recombinant strain B. subtilis 168/pMA5 UTR-A344E was scaled up in 5 L fermenter, and the final yield of L-asparaginase was 489.1 U/mL, showing great potential for industrial application.
Asparaginase/genetics*
;
Bacillus subtilis/genetics*
;
Industrial Microbiology
;
Protein Engineering
;
Rhizomucor/enzymology*
;
Sequence Alignment
2.Enzyme ancestral sequence reconstruction and directed evolution.
Kun ZHANG ; Yifei DAI ; Jindi SUN ; Jiachen LU ; Kequan CHEN
Chinese Journal of Biotechnology 2021;37(12):4187-4200
The amino acid sequence of ancestral enzymes from extinct organisms can be deduced through in silico approach termed ancestral sequence reconstruction (ASR). ASR usually has six steps, which are the collection of nucleic acid/amino acid sequences of modern enzymes, multiple sequence alignment, phylogenetic tree construction, computational deduction of ancestral enzyme sequence, gene cloning, and characterization of enzyme properties. This method is widely used to study the adaptation and evolution mechanism of molecules to the changing environmental conditions on planetary time scale. As enzymes play key roles in biocatalysis, this method has become a powerful method for studying the relationship among the sequence, structure, and function of enzymes. Notably, most of the ancestral enzymes show better temperature stability and mutation stability, making them ideal protein scaffolds for further directed evolution. This article summarizes the computer algorithms, applications, and commonly used computer software of ASR, and discusses the potential application in directed evolution of enzymes.
Amino Acid Sequence
;
Evolution, Molecular
;
Phylogeny
;
Proteins/genetics*
;
Sequence Alignment
3.Identification and characterization of DIR gene family in Schisandra chinensis.
Yu-Qing DONG ; Ting-Yan QIANG ; Jiu-Shi LIU ; Bin LI ; Xue-Ping WEI ; Yao-Dong QI ; Hai-Tao LIU ; Ben-Gang ZHANG
China Journal of Chinese Materia Medica 2021;46(20):5270-5277
Dirigent(DIR) proteins are involved in the biosynthesis of lignin, lignans, and gossypol in plants and respond to biotic and abiotic stresses. Based on the full-length transcriptome of Schisandra chinensis, bioinformatics methods were used to preliminarily identify the DIR gene family and analyze the physico-chemical properties, subcellular localization, conserved motifs, phylogeny, and expression patterns of the proteins. The results showed that a total of 34 DIR genes were screened and the encoded proteins were 156-387 aa. The physico-chemical properties of the proteins were different and the secondary structure was mainly random coil. Half of the DIR proteins were located in chloroplast, while the others in extracellular region, endoplasmic reticulum, cytoplasm, etc. Phylogenetic analysis of DIR proteins from S. chinensis and the other 8 species such as Arabidopsis thaliana, Oryza sativa, and Glycine max demonstrated that all DIR proteins were clustered into 5 subfamilies and that DIR proteins from S. chinensis were in 4 subfamilies. DIR-a subfamily has the unique structure of 8 β-sheets, as verified by multiple sequence alignment. Finally, through the analysis of the transcriptome of S. chinensis fruit at different development stages, the expression pattern of DIR was clarified. Combined with the accumulation of lignans in fruits at different stages, DIR might be related to the synthesis of lignans in S. chinensis. This study lays a theoretical basis for exploring the biological functions of DIR genes and elucidating the biosynthesis pathway of lignans in S. chinensis.
Fruit/genetics*
;
Lignans/analysis*
;
Phylogeny
;
Schisandra
;
Sequence Alignment
4.Cloning and expression analysis of 5-phosphomevalonate kinase gene (CcPMK) in Cinnamomum camphora.
Han ZHENG ; Mu-Yao YU ; Chun-Juan PU ; Mei-Lan CHEN ; Fu-Quan LI ; Ye SHEN ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2020;45(1):78-84
The 5-phosphomevalonate kinase(PMK) is a key enzyme in mevalonate(MVA) pathway which reversibly catalyzes the phosphorylation of mevalonate 5-phosphate(MVAP) to form mevalonate-5-diphosphate(MVAPP) in the presence of ATP and divalent metal ion such as Mg~(2+). In this research, on the basis of the transciptome database of Cinnamomum camphora, the PMK was cloned by cDNA from C. camphora, and was named CcPMK(GenBank number KU886266). The ORF of CcPMK was composed of 1 545 bp, encoding 514 amino acids. The bioinformatics analysis of CcPMK indicated that the molecular weight of the encoded protein was 56.14 kDa, with a theoretically isoelectric point of 7.64, and there was no signal peptide and transmembrane structure in putative protein. By multiple sequence alignment and phylogenetic tree analysis, we found that similarity between CcPMK and PMK amino acid sequence of other plants was as high as 75%. Among the similar sequences, 45% of them belonged to the alpha helix, while 16% belonged to the beta strand. CcPMK obtained 3 PMK protein family motifs and 1 ATP binding site Gly-Leu-Gly-Ser-Ser-Ala-Ala, and its 3 D structure contained a catalytic pocket structure, proving CcPMK as a member of PMK gene family. The result of phylogenetic tree showed that CcPMK was closely related to monocotyledon plants such as Phonenix dactylifera. The results of the Real-time PCR indicated that the expression level of CcPMK in borneol type was higher than that in linalool type, cineol type, iso-nerolidol type and camphor type. CcPMK expressed highest in roots and lowest in branches. Our results revealed that the expression level of CcPMK was different among five chemical types and different plant tissues, and the research provides foundation for further study of the terpenoids biosynthetic pathway in C. camphora.
Cinnamomum camphora/genetics*
;
Cloning, Molecular
;
Genes, Plant
;
Phosphotransferases (Phosphate Group Acceptor)/genetics*
;
Phylogeny
;
Sequence Alignment
5.Development and application of chloroplast molecular markers in Panax notoginseng.
Jia-Ling SUN ; Yan HAN ; Xiu-Ming CUI ; Yuan LIU
China Journal of Chinese Materia Medica 2020;45(6):1342-1349
The molecular markers(cpSSR, cpSNP and cpIndel) were developed based on the whole genome sequence of Panax notoginseng chloroplast genome, which provide a powerful tool for the evaluation and analysis of the future P. notoginseng germplasm resources. The 89 P. notoginseng samples from 9 groups were used for the experiment, and the data for the study were derived from NCBI and the GenBank numbers were: KJ566590, KP036468, KR021381 and KT001509. Through sequence alignment, 30 polymorphic sites(SNP and Indel) were identified, including 16 cpSNP and 14 cpIndel; cpSNP and cpIndel accounted for far more than the gene region in the intergenic region. The developed cpSSR reached 87-89, the repeat unit was mainly composed of trinucleotide, accounting for 70%-71%, and the dinucleotide was the least, accounting for 7%. Eighteen cpDNA molecular markers were developed, including 7 cpSSR primers, 6 cpIndel primers, and 5 cpSNP primers. The MatK gene and ycf1 primers were chosen as control. According to the results of DNA gel electrophoresis, cpSSR-5, pgcpir019 and pncp08 can be used to distinguish different cultivated populations of P. notoginseng. Among them, cpSSR-5 and pgcpir019 can also be used to distinguish the inter-species resources of ginseng by comprehensive sequence length, population π value and average nucleotide difference. However, pncp08 can only be used to distinguish different populations of P. notoginseng. In addition, the effect of distinguishing the groups of P. notoginseng, which the primer pncp-M(based on the MatK gene) is weaker than the cpSSR-5, pgcpir019 and pncp08.
DNA, Chloroplast/genetics*
;
Genetic Markers
;
Genetics, Population
;
INDEL Mutation
;
Panax notoginseng/genetics*
;
Polymorphism, Single Nucleotide
;
Sequence Alignment
6.Identification of three novel SRD5A2 mutations in Chinese patients with 5α-reductase 2 deficiency.
Tong CHENG ; Hao WANG ; Bing HAN ; Hui ZHU ; Hai-Jun YAO ; Shuang-Xia ZHAO ; Wen-Jiao ZHU ; Hua-Ling ZHAI ; Fu-Guo CHEN ; Huai-Dong SONG ; Kai-Xiang CHENG ; Yang LIU ; Jie QIAO
Asian Journal of Andrology 2019;21(6):577-581
In this study, we investigated the genetics, clinical features, and therapeutic approach of 14 patients with 5α-reductase deficiency in China. Genotyping analysis was performed by direct sequencing of PCR products of the steroid 5α-reductase type 2 gene (SRD5A2). The 5α-reductase activities of three novel mutations were investigated by mutagenesis and an in vitro transfection assay. Most patients presented with a microphallus, variable degrees of hypospadias, and cryptorchidism. Eight of 14 patients (57.1%) were initially reared as females and changed their social gender from female to male after puberty. Nine mutations were identified in the 14 patients. p.G203S, p.Q6X, and p.R227Q were the most prevalent mutations. Three mutations (p.K35N, p.H162P, and p.Y136X) have not been reported previously. The nonsense mutation p.Y136X abolished enzymatic activity, whereas p.K35N and p.H162P retained partial enzymatic activity. Topical administration of dihydrotestosterone during infancy or early childhood combined with hypospadia repair surgery had good therapeutic results. In conclusion, we expand the mutation profile of SRD5A2 in the Chinese population. A rational clinical approach to this disorder requires early and accurate diagnosis, especially genetic diagnosis.
3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics*
;
Adolescent
;
Adult
;
Asian People/genetics*
;
Child
;
Child, Preschool
;
China
;
Disorder of Sex Development, 46,XY/genetics*
;
Follicle Stimulating Hormone/blood*
;
Genitalia, Male/abnormalities*
;
Humans
;
Hypospadias/genetics*
;
Luteinizing Hormone/blood*
;
Male
;
Membrane Proteins/genetics*
;
Mutation/genetics*
;
Sequence Alignment
;
Steroid Metabolism, Inborn Errors/genetics*
;
Testosterone/blood*
;
Young Adult
7.DNA sequences homologous to hepatitis C virus (HCV) in the extrachromosomal circular DNA in peripheral blood mononuclear cells of HCV-negative subjects.
Reinhard H DENNIN ; Jian-Er WO
Journal of Zhejiang University. Science. B 2019;20(8):637-646
OBJECTIVE:
This study aimed to investigate DNA sequences that are substantially homologous to the corresponding RNA sequence sections of the hepatitis C virus (HCV). These DNA sequences are present in the whole DNA extracted from peripheral blood mononuclear cells (PBMCs) of HCV-negative subjects. We presumed that these experimentally proven 5'-noncoding region (5'-NCR) homologous DNA sequences could be contained in the extrachromosomal circular DNA (eccDNA) fraction as part of the whole cellular DNA.
METHODS:
Home-made polymerase chain reaction (PCR) with whole cellular and isolated eccDNA, nucleotide basic local alignment search tool (BLASTn) alignments, and tests for patterns of methylation in selected sequence sections were performed.
RESULTS:
The PCR tests revealed DNA sequences of up to 320 bp that broadly matched the corresponding sequence sections of known HCV genotypes. In contrast, BLASTn alignment searches of published HCV 5'-NCR sequences with human genome databases revealed only sequence segments of up to 36 bp of the 5'-NCR. The composition of these sequences shows missing base pairs, base pair mismatches as well as complete homology with HCV reference sequences. These short sequence sections are present in numerous copies on both the same and different chromosomes. The selected sequence region within the DNA sequences of the 5'-NCR revealed a broad diversity of individual patterns of methylation.
CONCLUSIONS
The experimental results confirm our assumption that parts of the HCV 5'-NCR genomic RNA sequences are present at the DNA level in the eccDNA fraction of PBMCs. The tests for methylation patterns therein revealed individual methylomes which could represent an epigenetic feature. The respective sequence section might be subject to genetic regulation.
Computational Biology
;
DNA Methylation
;
DNA, Circular/genetics*
;
DNA, Viral/genetics*
;
Genome, Human
;
Genomics
;
Genotype
;
Hepacivirus/genetics*
;
Hepatitis C/virology*
;
Humans
;
Leukocytes, Mononuclear/virology*
;
Polymerase Chain Reaction
;
RNA, Viral/genetics*
;
Sequence Alignment
8.The binding of a monoclonal antibody to the apical region of SCARB2 blocks EV71 infection.
Xuyuan ZHANG ; Pan YANG ; Nan WANG ; Jialong ZHANG ; Jingyun LI ; Hao GUO ; Xiangyun YIN ; Zihe RAO ; Xiangxi WANG ; Liguo ZHANG
Protein & Cell 2017;8(8):590-600
Entero virus 71 (EV71) causes hand, foot, and mouth disease (HFMD) and occasionally leads to severe neurological complications and even death. Scavenger receptor class B member 2 (SCARB2) is a functional receptor for EV71, that mediates viral attachment, internalization, and uncoating. However, the exact binding site of EV71 on SCARB2 is unknown. In this study, we generated a monoclonal antibody (mAb) that binds to human but not mouse SCARB2. It is named JL2, and it can effectively inhibit EV71 infection of target cells. Using a set of chimeras of human and mouse SCARB2, we identified that the region containing residues 77-113 of human SCARB2 contributes significantly to JL2 binding. The structure of the SCARB2-JL2 complex revealed that JL2 binds to the apical region of SCARB2 involving α-helices 2, 5, and 14. Our results provide new insights into the potential binding sites for EV71 on SCARB2 and the molecular mechanism of EV71 entry.
Amino Acid Sequence
;
Animals
;
Antibodies, Monoclonal
;
chemistry
;
genetics
;
metabolism
;
Binding Sites
;
Cell Line
;
Crystallography, X-Ray
;
Enterovirus A, Human
;
drug effects
;
genetics
;
growth & development
;
immunology
;
Fibroblasts
;
drug effects
;
virology
;
Gene Expression
;
HEK293 Cells
;
Humans
;
Immunoglobulin Fab Fragments
;
chemistry
;
genetics
;
metabolism
;
Lysosome-Associated Membrane Glycoproteins
;
chemistry
;
genetics
;
immunology
;
Mice
;
Models, Molecular
;
Protein Binding
;
Protein Conformation, alpha-Helical
;
Protein Conformation, beta-Strand
;
Protein Interaction Domains and Motifs
;
Receptors, Scavenger
;
chemistry
;
genetics
;
immunology
;
Receptors, Virus
;
chemistry
;
genetics
;
immunology
;
Recombinant Fusion Proteins
;
chemistry
;
genetics
;
immunology
;
Sequence Alignment
;
Sequence Homology, Amino Acid
;
Sf9 Cells
;
Spodoptera
;
Thermodynamics
9.HPPR encodes the hydroxyphenylpyruvate reductase required for the biosynthesis of hydrophilic phenolic acids in Salvia miltiorrhiza.
Guo-Quan WANG ; Jun-Feng CHEN ; Bo YI ; He-Xin TAN ; Lei ZHANG ; Wan-Sheng CHEN
Chinese Journal of Natural Medicines (English Ed.) 2017;15(12):917-927
Salvia miltiorrhiza is a medicinal plant widely used in the treatment of cardiovascular and cerebrovascular diseases. Hydrophilic phenolic acids, including rosmarinic acid (RA) and lithospermic acid B (LAB), are its primary medicinal ingredients. However, the biosynthetic pathway of RA and LAB in S. miltiorrhiza is still poorly understood. In the present study, we accomplished the isolation and characterization of a novel S. miltiorrhiza Hydroxyphenylpyruvate reductase (HPPR) gene, SmHPPR, which plays an important role in the biosynthesis of RA. SmHPPR contained a putative catalytic domain and a NAD(P)H-binding motif. The recombinant SmHPPR enzyme exhibited high HPPR activity, converting 4-hydroxyphenylpyruvic acid (pHPP) to 4-hydroxyphenyllactic acid (pHPL), and exhibited the highest affinity for substrate 4-hydroxyphenylpyruvate. SmHPPR expression could be induced by various treatments, including SA, GA, MeJA and Ag, and the changes in SmHPPR activity were correlated well with hydrophilic phenolic acid accumulation. SmHPPR was localized in cytoplasm, most likely close to the cytosolic NADPH-dependent hydroxypyruvate reductase active in photorespiration. In addition, the transgenic S. miltiorrhiza hairy roots overexpressing SmHPPR exhibited up to 10-fold increases in the products of hydrophilic phenolic acid pathway. In conclusion, our findings provide a new insight into the synthesis of active pharmaceutical compounds at molecular level.
Amino Acid Sequence
;
Benzofurans
;
Biosynthetic Pathways
;
genetics
;
Cinnamates
;
Depsides
;
Gene Expression Regulation, Plant
;
genetics
;
Oxidoreductases
;
genetics
;
Phenylpropionates
;
metabolism
;
Phenylpyruvic Acids
;
metabolism
;
Phylogeny
;
Plant Proteins
;
genetics
;
metabolism
;
Plant Roots
;
chemistry
;
enzymology
;
genetics
;
metabolism
;
Plants, Genetically Modified
;
Recombinant Proteins
;
analysis
;
biosynthesis
;
Salvia miltiorrhiza
;
chemistry
;
enzymology
;
genetics
;
metabolism
;
Sequence Alignment
10.Silencing of ABCG2 by MicroRNA-3163 Inhibits Multidrug Resistance in Retinoblastoma Cancer Stem Cells.
Ming JIA ; Zhenhua WEI ; Peng LIU ; Xiaoli ZHAO
Journal of Korean Medical Science 2016;31(6):836-842
To investigate the function and regulation mechanism of ATP-binding cassette, subfamily G, member 2 (ABCG2) in retinoblastoma cancer stem cells (RCSCs), a long-term culture of RCSCs from WERI-Rb1 cell line was successfully established based on the high expression level of ABCG2 on the surface of RCSCs. To further explore the molecular mechanism of ABCG2 on RCSCs, a microRNA that specifically targets ABCG2 was predicted. Subsequently, miR-3163 was selected and confirmed as the ABCG2-regulating microRNA. Overexpression of miR-3163 led to a significant decrease in ABCG2 expression. Additionally, ABCG2 loss-of-function induced anti-proliferation and apoptosis-promoting functions in RCSCs, and multidrug resistance to cisplatin, carboplatin, vincristine, doxorubicin, and etoposide was greatly improved in these cells. Our data suggest that miR-3163 has a significant impact on ABCG2 expression and can influence proliferation, apoptosis, and drug resistance in RCSCs. This work may provide new therapeutic targets for retinoblastoma.
3' Untranslated Regions
;
ATP Binding Cassette Transporter, Sub-Family G, Member 2/antagonists & inhibitors/genetics/*metabolism
;
Antagomirs/metabolism
;
Antineoplastic Agents/toxicity
;
Apoptosis/drug effects
;
Base Sequence
;
Cell Line, Tumor
;
Cell Proliferation/drug effects
;
Drug Resistance, Neoplasm/drug effects
;
Gene Silencing
;
Humans
;
MicroRNAs/antagonists & inhibitors/genetics/*metabolism
;
Neoplasm Proteins/antagonists & inhibitors/genetics/*metabolism
;
Neoplastic Stem Cells/*metabolism
;
Retinoblastoma/metabolism/pathology
;
Sequence Alignment
;
Transfection

Result Analysis
Print
Save
E-mail