1.Quercetin Confers Protection against Sepsis-Related Acute Respiratory Distress Syndrome by Suppressing ROS/p38 MAPK Pathway.
Wei-Chao DING ; Juan CHEN ; Quan LI ; Yi REN ; Meng-Meng WANG ; Wei ZHANG ; Xiao-Hang JI ; Xin-Yao WU ; Shi-Nan NIE ; Chang-Bao HUANG ; Zhao-Rui SUN
Chinese journal of integrative medicine 2025;31(11):1011-1020
OBJECTIVE:
To identify the underlying mechanism by which quercetin (Que) alleviates sepsis-related acute respiratory distress syndrome (ARDS).
METHODS:
In vivo, C57BL/6 mice were assigned to sham, cecal ligation and puncture (CLP), and CLP+Que (50 mg/kg) groups (n=15 per group) by using a random number table. The sepsisrelated ARDS mouse model was established using the CLP method. In vitro, the murine alveolar macrophages (MH-S) cells were classified into control, lipopolysaccharide (LPS), LPS+Que (10 μmol/L), and LPS+Que+acetylcysteine (NAC, 5 mmol/L) groups. The effect of Que on oxidative stress, inflammation, and apoptosis in mice lungs and MH-S cells was determined, and the mechanism with reactive oxygen species (ROS)/p38 mitogen-activated protein kinase (MAPK) pathway was also explored both in vivo and in vitro.
RESULTS:
Que alleviated lung injury in mice, as reflected by a reversal of pulmonary histopathologic changes as well as a reduction in lung wet/dry weight ratio and neutrophil infiltration (P<0.05 or P<0.01). Additionally, Que improved the survival rate and relieved gas exchange impairment in mice (P<0.01). Que treatment also remarkedly reduced malondialdehyde formation, superoxide dismutase and catalase depletion, and cell apoptosis both in vivo and in vitro (P<0.05 or P<0.01). Moreover, Que treatment diminished the release of inflammatory factors interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 both in vivo and in vitro (P<0.05 or P<0.01). Mechanistic investigation clarifified that Que administration led to a decline in the phosphorylation of p38 MAPK in addition to the suppression of ROS expression (P<0.01). Furthermore, in LPS-induced MH-S cells, ROS inhibitor NAC further inhibited ROS/p38 MAPK pathway, as well as oxidative stress, inflammation, and cell apoptosis on the basis of Que treatment (P<0.05 or P<0.01).
CONCLUSION
Que was found to exert anti-oxidative, anti-inflammatory, and anti-apoptotic effects by suppressing the ROS/p38 MAPK pathway, thereby conferring protection for mice against sepsis-related ARDS.
Animals
;
Sepsis/drug therapy*
;
Quercetin/therapeutic use*
;
Respiratory Distress Syndrome/enzymology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Mice, Inbred C57BL
;
Reactive Oxygen Species/metabolism*
;
Apoptosis/drug effects*
;
Male
;
Oxidative Stress/drug effects*
;
MAP Kinase Signaling System/drug effects*
;
Lung/drug effects*
;
Mice
;
Lipopolysaccharides
;
Macrophages, Alveolar/pathology*
;
Inflammation/pathology*
;
Protective Agents/therapeutic use*
2.Itaconic acid alleviates macrophage PANoptosis in sepsis-associated acute lung injury via inhibiting ninjurin-1-mediated plasma membrane rupture.
Mengrui CHEN ; Xiaohua TAN ; Wenjing ZHONG ; Hanxi SHA ; Liying LIANG ; Shaokun LIU
Journal of Central South University(Medical Sciences) 2025;50(6):970-985
OBJECTIVES:
Sepsis-associated acute lung injury (S-ALI) is one of the major causes of death in intensive care unit (ICU) patients, yet its mechanisms remain incompletely understood and effective therapies are lacking. Lytic cell death of macrophages is a key driver of the inflammatory cascade in S-ALI. PANoptosis, a newly recognized form of lytic cell death characterized by PANoptosome assembly and activation, involves plasma membrane rupture (PMR) mediated by ninjurin-1 (NINJ1), a recently identified pore-forming protein. Itaconic acid is known for its anti-inflammatory effects, but its role in macrophage PANoptosis during S-ALI is unclear. This study aims to investigate the protective effect of itaconic acid on macrophage PANoptosis in S-ALI to provide new therapeutic insights.
METHODS:
Male specific-pathogen-free C57BL/6J mice (6-8 weeks, 18-20 g) received intraperitoneal lipopolysaccharide (LPS) to establish a classical S-ALI model. Western blotting was used to assess PANoptosome-related proteins and enzymes involved in the itaconic acid metabolic pathway, while real-time reverse transcription polymerase chain reaction and metabolomics quantified itaconic acid levels. Primary peritoneal macrophages (PMs) were pretreated with the itaconate derivative 4-octyl itaconate (4-OI) and then exposed to tumor necrosis factor alpha (TNF-α) plus interferon gamma (IFN-γ) to induce PANoptosis. Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. Western blotting was employed to quantify enzymes of the itaconate-metabolic pathway in PANoptotic macrophages, to evaluate the impact of 4-OI on PANoptosome-associated proteins, and to determine NINJ1 abundance in lung tissues from S-ALI mice and in PANoptotic macrophages. Fluorescent dye FM4-64 was used to visualize 4-OI-mediated changes in PMR, whereas immunofluorescence staining mapped the effect of 4-OI on both the expression level and membrane localization of NINJ1 in PANoptotic macrophages. The effect of 4-OI on lactate dehydrogenase (LDH) release in culture supernatants and peripheal blood serum was assessed using a LDH assay kit, and non-denataring polyacylamide gel electrophoresis was used to assess the expression of NINJ1 in S-ALI mouse lung tissues and the impact of 4-OI on the expression of PANoptosis-associated NINJ1 multimeric reflected protein in macropahges.
RESULTS:
In S-ALI mouse lungs, PANoptosome components [NOD-like receptor thermal protein domain associated protein 3 (NLRP3), Gasdermin D (GSDMD), Caspase-1, Z-DNA binding protein (ZBP1), and Caspase-3] and phosphorylated mixed lineage kinase domain-like protein (MLKL) S345 were significantly upregulated (all P<0.05), while metabolomics showed compensatory increases in itaconic acid and its key enzymes [aconitate decarboxylase 1 (ACOD1)/immunoresponsive gene 1 (IRG1)]. In macrophages, 4-OI obviously suppressed PANoptosome protein expression, reduced LDH release, restored plasma membrane integrity, and inhibited NINJ1 expression and oligomerization at the membrane (P<0.05).
CONCLUSIONS
Itaconic acid may alleviate macrophage PANoptosis in S-ALI by inhibiting NINJ1-mediated plasma membrane rupture. Targeting NINJ1 or enhancing itaconate pathways may offer a novel therapeutic strategy for S-ALI.
Animals
;
Acute Lung Injury/pathology*
;
Succinates/pharmacology*
;
Sepsis/complications*
;
Mice, Inbred C57BL
;
Male
;
Mice
;
Macrophages/pathology*
;
Cell Membrane/metabolism*
;
Lipopolysaccharides
;
Hydro-Lyases
3.Role of macrophages in the pathogenesis of septic cardiomyopathy.
Linke ZHANG ; Zhiling ZHAO ; Tingcui LI ; Wen LI ; Yuxin LENG ; Qinggang GE
Chinese Critical Care Medicine 2025;37(3):305-309
Sepsis is a life-threatening organ dysfunction caused by the body's dysregulated response to infection. Reversible myocardial dysfunction caused by sepsis is known as septic cardiomyopathy. A thorough understanding of the pathogenesis of septic cardiomyopathy is crucial for early intervention to prevent its progression and improve the success rate of sepsis treatment. At present, the research on the pathogenesis of septic cardiomyopathy mainly focuses on two aspects: the systemic neuroimmune mechanism and the local changes of cardiomyocytes. The former mainly includes the autonomic nervous dysfunction mainly caused by sympathetic overactivation and the inflammatory storm induced by immune response disorder. The latter covers the dysregulation of calcium homeostasis, mitochondrial dysfunction and energy metabolism disorder of cardiomyocytes. Immune dysfunction is one of the key factors that cause the poor prognosis of patients with septic cardiomyopathy. Macrophages are sentinel cells of the body's innate immunity. Cardiac macrophages have been confirmed to be one of the most heterogeneous immune cells in the heart. According to their origin and differentiation, they can be divided into bone marrow-derived tissue infiltrating macrophages and cardiac resident macrophages, which have roles of polarization, phagocytosis, regulation of inflammatory response, and participate in innate and adaptive immunity. In the occurrence and development of septic cardiomyopathy, cardiac macrophages recruited from the blood participate in balancing the inflammation and repair of myocardial tissue through the conversion of pro-inflammatory phenotype and anti-inflammatory phenotype. Cardiac resident macrophages mediate immune phagocytosis to maintain the local homeostasis of cardiomyocytes, and the glycometabolic reprogramming of macrophages regulates the release of inflammatory factors, while macrophage metabolic reprogramming regulates the release of inflammatory factors. A deeper understanding of the biological behavior of macrophages, and regulating the polarization, metabolism and phagocytosis of cardiac macrophages, could serve as new target for the prevention and treatment of septic cardiomyopathy. Therefore, this article reviews the key pathogenesis of septic cardiomyopathy and the role of macrophages of different origins and differentiation, revealing the possibility of developing new strategies for the prevention and treatment of septic cardiomyopathy.
Humans
;
Cardiomyopathies/pathology*
;
Macrophages/immunology*
;
Sepsis/complications*
;
Myocytes, Cardiac
4.Genetic differences in hippocampus of mice susceptible to sepsis-associated encephalopathy.
Journal of Central South University(Medical Sciences) 2024;49(11):1777-1789
OBJECTIVES:
Sepsis-associated encephalopathy (SAE) is a common complication of sepsis, which can lead to long-term cognitive impairment and anxiety in patients, and may even contribute to mortality in septic individuals. There is substantial individual variability in the incidence and severity and susceptibility of SAE, but the mechanisms regulating susceptibility remain unclear. Previous studies have shown that hippocampal damage is directly associated with cognitive and emotional disturbances in SAE. This study aims to explore the impact of hippocampal differentially expressed genes on SAE susceptibility in a mouse model.
METHODS:
Male specific pathogen-free (SPF)-grade C57BL/6 mice (6-8 weeks old) were randomly divided into a saline control group (Con group) and an SAE model group. SAE was induced by intraperitoneal injection of 10 mg/kg lipopolysaccharide (LPS), while control mice received an equivalent volume of saline. Cognitive and anxiety-like behaviors were assessed using the open field test (OFT), novel object recognition (NOR), and Y-maze test. Based on mean±standard deviation of behavioral results from the Con group, SAE mice were further classified into high-sensitivity (HS) and low-sensitivity (LS) subgroups. Immunohistochemistry was performed to detect the expression of immediate early gene c-Fos and neuronal marker neuronal nuclei (NeuN). Nissl staining was used to assess neuronal injury in the dentate gyrus (DG), cornu ammonis 1 (CA1), and cornu ammonis 3 (CA3) regions of the hippocampus. RNA sequencing (RNA-seq) was conducted on hippocampal tissues from HS and LS mice to identify differentially expressed genes, followed by pathway enrichment analysis.
RESULTS:
No significant behavioral susceptibility differences were observed between the overall SAE group and controls. However, HS mice showed severer cognitive deficits and anxiety-like behavior compared to LS mice. Immunohistochemistry revealed significantly higher expression of c-Fos in the hippocampus of LS mice (P<0.05), while Nissl and NeuN staining revealed milder neuronal damage in the hippocampus of LS mice than that of HS mice (both P<0.05). RNA-seq analysis identified 130 upregulated and 142 downregulated DEGs in LS and HS mice, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that upregulated genes in LS mice were primarily involved in pluripotency regulation, cyclic adenosine monophosphate (cAMP) signaling, and Wnt signaling pathways, in contrast, the downregulated genes were mainly related to cell adhesion, neuroactive ligand-receptor interaction, and calcium signaling pathways.
CONCLUSIONS
Differential gene expression in the hippocampus may contribute to individual susceptibility to cognitive and emotional dysfunction in SAE, suggesting potential genetic targets for individualized intervention.
Animals
;
Sepsis-Associated Encephalopathy/genetics*
;
Male
;
Hippocampus/pathology*
;
Mice, Inbred C57BL
;
Mice
;
Anxiety/genetics*
;
Lipopolysaccharides
;
Genetic Predisposition to Disease
;
Disease Models, Animal
;
Sepsis/genetics*
5.Progress in the immunometabolism in the regulation of macrophage function in sepsis.
Yingying LU ; Yan BAI ; Fei LI ; Zhuqing RAO
Chinese Critical Care Medicine 2024;36(12):1321-1324
Macrophages are widely distributed in peripheral blood, lungs, liver, brain, kidneys, skin, testes, vascular endothelial cells, and other parts of the body. As sentinel cells of innate immunity, they play an important role in the occurrence and development of sepsis. Recent research in immune metabolism has revealed the complicated relationship between specific metabolic pathways of macrophages and their phenotype and function in sepsis. During the pro-inflammatory phase of sepsis, macrophages are characterized by glycolysis, while in the immunosuppressive phase, they rely more on mitochondrial oxidative phosphorylation (OXPHOS). Hence, this review describes how macrophages metabolism related signaling pathways, molecules, enzymes and metabolic intermediates determine their phenotype and function to find critical targets which regulate the body immune status in sepsis.
Sepsis/pathology*
;
Macrophages/pathology*
;
Humans
;
Inflammation/pathology*
;
Signal Transduction
6.Shenfu Injection alleviates sepsis-associated lung injury by regulating HIF-1α.
Luan-Luan ZHANG ; Ya-Nan ZI ; Ye-Peng ZHANG ; Hui PEI ; Xiang-Yu ZHENG ; Jia-Feng XIE ; Dong XU ; Zhi-Qiang ZHU
China Journal of Chinese Materia Medica 2023;48(23):6492-6499
Shenfu Injection(SFI) is praised for the high efficacy in the treatment of septic shock. However, the precise role of SFI in the treatment of sepsis-associated lung injury is not fully understood. This study investigated the protective effect of SFI on sepsis-associated lung injury by a clinical trial and an animal experiment focusing on the hypoxia-inducing factor-1α(HIF-1α)-mediated mitochondrial autophagy. For the clinical trial, 70 patients with sepsis-associated lung injury treated in the emergency intensive care unit of the First Affiliated Hospital of Zhengzhou University were included. The levels of interleukin(IL)-6 and tumor necrosis factor(TNF)-α were measured on days 1 and 5 for every patient. Real-time quantitative polymerase chain reaction(RT-qPCR) was performed to determine the mRNA level of hypoxia inducible factor-1α(HIF-1α) in the peripheral blood mononuclear cells(PBMCs). For the animal experiment, 32 SPF-grade male C57BL/6J mice(5-6 weeks old) were randomized into 4 groups: sham group(n=6), SFI+sham group(n=10), SFI+cecal ligation and puncture(CLP) group(n=10), and CLP group(n=6). The body weight, body temperature, wet/dry weight(W/D) ratio of the lung tissue, and the pathological injury score of the lung tissue were recorded for each mouse. RT-qPCR and Western blot were conducted to determine the expression of HIF-1α, mitochondrial DNA(mt-DNA), and autophagy-related proteins in the lung tissue. The results of the clinical trial revealed that the SFI group had lowered levels of inflammatory markers in the blood and alveolar lavage fluid and elevated level of HIF-1α in the PBMCs. The mice in the SFI group showed recovered body temperature and body weight. lowered TNF-α level in the serum, and decreased W/D ratio of the lung tissue. SFI reduced the inflammatory exudation and improved the alveolar integrity in the lung tissue. Moreover, SFI down-regulated the mtDNA expression and up-regulated the protein levels of mitochondrial transcription factor A(mt-TFA), cytochrome c oxidase Ⅳ(COXⅣ), HIF-1α, and autophagy-related proteins in the lung tissue of the model mice. The findings confirmed that SFI could promote mitophagy to improve mitochondrial function by regulating the expression of HIF-1α.
Humans
;
Male
;
Mice
;
Animals
;
Leukocytes, Mononuclear
;
Mice, Inbred C57BL
;
Lung/metabolism*
;
Acute Lung Injury/drug therapy*
;
Tumor Necrosis Factor-alpha/genetics*
;
Sepsis/genetics*
;
Hypoxia/pathology*
;
Autophagy-Related Proteins
;
Body Weight
;
Drugs, Chinese Herbal
8.Research of progress of mitochondria in the pathogenesis of sepsis.
Liwei YU ; Zhiling ZHAO ; Gaiqi YAO
Chinese Critical Care Medicine 2023;35(6):669-672
Sepsis is an organ dysfunction caused by dysregulation of the body's response to infection, with high morbidity and mortality. The pathogenesis of sepsis is still unclear, and there are no specific treatment drugs. As a cell energy supply unit, the dynamic changes of mitochondria are closely related to various diseases. Studies have shown that structure and function of mitochondria are changed in different organs during sepsis. The energy shortage, oxidative stress change, imbalance of fusion and fission, autophagy reduce, biological functions of mitochondria play important roles in sepsis progress, which can provide a research target for the treatment of sepsis.
Humans
;
Mitochondria/pathology*
;
Sepsis/drug therapy*
;
Oxidative Stress
;
Autophagy
9.Effects of exosomes from human adipose-derived mesenchymal stem cells on pulmonary vascular endothelial cells injury in septic mice and its mechanism.
Wei Xia CAI ; Kuo SHEN ; Tao CAO ; Jing WANG ; Ming ZHAO ; Ke Jia WANG ; Yue ZHANG ; Jun Tao HAN ; Da Hai HU ; Ke TAO
Chinese Journal of Burns 2022;38(3):266-275
Objective: To investigate the effects of exosomes from human adipose-derived mesenchymal stem cells (ADSCs) on pulmonary vascular endothelial cells (PMVECs) injury in septic mice and its mechanism. Methods: The experimental research method was adopted. The primary ADSCs were isolated and cultured from the discarded fresh adipose tissue of 3 patients (female, 10-25 years old), who were admitted to the First Affiliated Hospital of Air Force Medical University undergoing abdominal surgery, and the cell morphology was observed by inverted phase contrast microscope on the 5th day. The expressions of CD29, CD34, CD44, CD45, CD73, and CD90 of ADSCs in the third passage were detected by flow cytometry. The third to the fifth passage of ADSCs were collected, and their exosomes from the cell supernatant were obtained by differential ultracentrifugation, and the shape, particle size, and the protein expressions of CD9, CD63, tumor susceptibility gene 101 (TSG101), and β-actin of exosomes were detected, respectively, by transmission electron microscopy, nano-particle tracking analysis and Western blotting. Twenty-four adult male BALB/c mice were adopted and were divided into normal control group, caecal ligation perforation (CLP) alone group, and CLP+ADSC-exosome group with each group of 8 according to random number table (the same grouping method below) and were treated accordingly. At 24 h after operation, tumor necrosis factor (TNF-α) and interleukin 1β (IL-1β) levels of mice serum were detected by enzyme-linked immunosorbent assay, and lung tissue morphology of mice was detected by hematoxylin-eosin and myeloperoxidase staining, and the expression of 8-hydroxy-deoxyguanosine (8-OHdG) of mouse lung cells was detected by immunofluorescence method. Primary PMVECs were obtained from 1-month-old C57 mice regardless gender by tissue block method. The expression of CD31 of PMVECs was detected by immunofluorescence and flow cytometry. The third passage of PMVECs was co-cultured with ADSCs derived exosomes for 12 h, and the phagocytosis of exosomes by PMVECs was detected by PKH26 kit. The third passage of PMVECs were adopted and were divided into blank control group, macrophage supernatant alone group, and macrophage supernatant+ADSC-exosome group, with 3 wells in each group, which were treated accordingly. After 24 h, the content of reactive oxygen species in cells was detected by flow cytometry, the expression of 8-OHdG in cells was detected by immunofluorescence, and Transwell assay was used to determine the permeability of cell monolayer. The number of samples in above were all 3. Data were statistically analyzed with one-way analysis of variance and least significant difference t test. Results: The primary ADSCs were isolated and cultured to day 5, growing densely in a spindle shape with a typical swirl-like. The percentages of CD29, CD44, CD73 and CD90 positive cells of ADSCs in the third passage were all >90%, and the percentages of CD34 and CD45 positive cells were <5%. Exosomes derived from ADSCs of the third to fifth passages showed a typical double-cavity disc-like structure with an average particle size of 103 nm, and the protein expressions of CD9, CD63 and TSG101 of exosomes were positive, while the protein expression of β-actin of exosomes was negative. At 24 h after operation, compared with those in normal control group, both the levels of TNF-α and IL-1β of mice serum in CLP alone group were significantly increased (with t values of 28.76 and 29.69, respectively, P<0.01); compared with those in CLP alone group, both the content of TNF-α and IL-1β of mice serum in CLP+ADSC-exosome group was significantly decreased (with t values of 9.90 and 4.76, respectively, P<0.05 or P<0.01). At 24 h after surgery, the pulmonary tissue structure of mice in normal control group was clear and complete without inflammatory cell infiltration; compared with those in normal control group, the pulmonary tissue edema and inflammatory cell infiltration of mice in CLP alone group were more obvious; compared with those in CLP alone group, the pulmonary tissue edema and inflammatory cell infiltration of mice in CLP+ADSC-exosome group were significantly reduced. At 24 h after operation, endothelial cells in lung tissues of mice in 3 groups showed positive expression of CD31; compared with that in normal control group, the fluorescence intensity of 8-OHdG positive cells of the lung tissues of mice in CLP alone group was significantly increased, and compared with that in CLP alone group, the fluorescence intensity of 8-OHdG positive cells in the lung tissues of mice in CLP+ADSC-exosome group was significantly decreased. The PMVECs in the 3rd passage showed CD31 positive expression by immunofluorescence, and the result of flow cytometry showed that CD31 positive cells accounted for 99.5%. At 12 h after co-culture, ADSC-derived exosomes were successfully phagocytose by PMVECs and entered its cytoplasm. At 12 h after culture of the third passage of PMVECs, compared with that in blank control group, the fluorescence intensity of reactive oxygen species of PMVECs in macrophage supernatant alone group was significantly increased (t=15.73, P<0.01); compared with that in macrophage supernatant alone group, the fluorescence intensity of reactive oxygen species of PMVECs in macrophage supernatant+ADSC-exosome group was significantly decreased (t=4.72, P<0.01). At 12 h after culture of the third passage of PMVECs, and the 8-OHdG positive fluorescence intensity of PMVECs in macrophage supernatant alone group was significantly increased; and compared with that in blank control group, the 8-OHdG positive fluorescence intensity of PMVECs in macrophage+ADSC-exosome supernatant group was between blank control group and macrophage supernatant alone group. At 12 h after culture of the third passage PMVECs, compared with that in blank control group, the permeability of PMVECs monolayer in macrophage supernatant alone group was significantly increased (t=6.34, P<0.01); compared with that in macrophage supernatant alone group, the permeability of PMVECs monolayer cells in macrophage supernatant+ADSC-exosome group was significantly decreased (t=2.93, P<0.05). Conclusions: Exosomes derived from ADSCs can ameliorate oxidative damage in mouse lung tissue, decrease the level of reactive oxygen species, 8-OHdG expression, and permeability of PMVECs induced by macrophage supernatant.
Animals
;
Endothelial Cells/metabolism*
;
Exosomes/metabolism*
;
Female
;
Humans
;
Lung Injury/metabolism*
;
Male
;
Mesenchymal Stem Cells/metabolism*
;
Mice
;
Sepsis/pathology*
10.Two cases of Vibrio vulnificus primary sepsis.
Da Sheng CHENG ; Shi Zhao JI ; Guang Yi WANG ; Feng ZHU ; Shi Chu XIAO ; Shi Hui ZHU
Chinese Journal of Burns 2022;38(3):276-280
This article analyzed the medical records of two patients with Vibrio vulnificus primary sepsis who were admitted to the First Affiliated Hospital of Naval Medical University and reviewed the latest literature. On November 6, 2019, a 54-year-old male patient was admitted to the hospital. The patient's lower limbs were red, swollen, and painful with ecchymosis and hemorrhagic bullae after he ate freshwater products. The emergency fasciotomy was performed 3 h after admission, and the multiple organ failure occurred after operation. The patient was given up treatment 24 h after admission. On August 12, 2020, a 73-year-old male patient was admitted to the hospital. He was in shock state on admission and had hemorrhagic bullae on his right lower limb after he ate seafood. At 3 h post admission, he underwent emergency surgical exploration and amputation of right thigh. Six days later, he received negative pressure wound treatment on the stump. On the 13th day post admission, his families forgo the active treatment and he died 15 d after admission. The two cases were both failed to be diagnosed at the first time, and the disease progressed rapidly. Necrotizing fasciitis and multiple organ failure occurred. After the diagnosis was confirmed, timely fasciotomy and high amputation were performed respectively. The microbiological examinations both reported Vibrio vulnificus. Although the 2 cases were not cured successfully, the course of disease and some indexes of patient with early amputation were better than those of patients with fasciotomy. Vibrio vulnificus is widely distributed and frequently detected in fresh water products. The pathogenic pathway is fuzzy and complex, and it is easy to be misdiagnosed. It is necessary to establish the treatment process of Vibrio vulnificus sepsis. Early and aggressive surgical intervention should be carried out as soon as possible, fasciotomy and debridement should be thorough, and the patients with hemorrhagic bullae should be amputated early. Postoperative comprehensive measures are also important for improving the survival rate of patients.
Aged
;
Fasciitis, Necrotizing/surgery*
;
Humans
;
Male
;
Middle Aged
;
Multiple Organ Failure
;
Sepsis/diagnosis*
;
Vibrio Infections/pathology*
;
Vibrio vulnificus

Result Analysis
Print
Save
E-mail