1.Explainable machine learning model for predicting septic shock in critically sepsis patients based on coagulation indexes: A multicenter cohort study.
Qing-Bo ZENG ; En-Lan PENG ; Ye ZHOU ; Qing-Wei LIN ; Lin-Cui ZHONG ; Long-Ping HE ; Nian-Qing ZHANG ; Jing-Chun SONG
Chinese Journal of Traumatology 2025;28(6):404-411
PURPOSE:
Septic shock is associated with high mortality and poor outcomes among sepsis patients with coagulopathy. Although traditional statistical methods or machine learning (ML) algorithms have been proposed to predict septic shock, these potential approaches have never been systematically compared. The present work aimed to develop and compare models to predict septic shock among patients with sepsis.
METHODS:
It is a retrospective cohort study based on 484 patients with sepsis who were admitted to our intensive care units between May 2018 and November 2022. Patients from the 908th Hospital of Chinese PLA Logistical Support Force and Nanchang Hongdu Hospital of Traditional Chinese Medicine were respectively allocated to training (n=311) and validation (n=173) sets. All clinical and laboratory data of sepsis patients characterized by comprehensive coagulation indexes were collected. We developed 5 models based on ML algorithms and 1 model based on a traditional statistical method to predict septic shock in the training cohort. The performance of all models was assessed using the area under the receiver operating characteristic curve and calibration plots. Decision curve analysis was used to evaluate the net benefit of the models. The validation set was applied to verify the predictive accuracy of the models. This study also used Shapley additive explanations method to assess variable importance and explain the prediction made by a ML algorithm.
RESULTS:
Among all patients, 37.2% experienced septic shock. The characteristic curves of the 6 models ranged from 0.833 to 0.962 and 0.630 to 0.744 in the training and validation sets, respectively. The model with the best prediction performance was based on the support vector machine (SVM) algorithm, which was constructed by age, tissue plasminogen activator-inhibitor complex, prothrombin time, international normalized ratio, white blood cells, and platelet counts. The SVM model showed good calibration and discrimination and a greater net benefit in decision curve analysis.
CONCLUSION
The SVM algorithm may be superior to other ML and traditional statistical algorithms for predicting septic shock. Physicians can better understand the reliability of the predictive model by Shapley additive explanations value analysis.
Humans
;
Shock, Septic/blood*
;
Machine Learning
;
Male
;
Female
;
Retrospective Studies
;
Middle Aged
;
Aged
;
Sepsis/complications*
;
ROC Curve
;
Cohort Studies
;
Adult
;
Intensive Care Units
;
Algorithms
;
Blood Coagulation
;
Critical Illness
2.A case of sepsis complicated by multiple organ dysfunction syndrome with CT appearance of pseudo-subarachnoid hem-orrhage.
Journal of Zhejiang University. Medical sciences 2025;54(1):115-119
A 39-year-old male patient was admitted to hospital with abdominal distension, unconsciousness, and anuria. Head computed tomography (CT) showed subarachnoid hemorrhage and diffuse cerebral edema. The high-density area of contrast accumulation region in the high-density CT plaque was 38 HU, and the preliminary diagnosis was SAH, incomplete intestinal obstruction, and sepsis caused by acute cerebrovascular disease. After admission, the patient displayed upturned eyes, limb convulsions, serum procalcitonin level exceeding 100 ng/mL, low blood pressure and septic shock. Imipenem was given for intensive anti-infection therapy. After treatment, procalcitonin levels showed a slow decline, renal function, and intra-abdominal pressure returned to normal, urine volume gradually increased, but platelets still showed a downward trend. Lumbar puncture showed colorless and clear cerebrospinal fluid, and the biochemical and routine results of cerebrospinal fluid were normal. SAH and intracranial infection were excluded, and it was considered that the head CT showed pseudo-subarachnoid hemorrhage. On the 3rd day of admission, laparoscopic exploratory laparotomy+appendectomy+abdominal drainage under general anesthesia were performed. During surgery, purulent gangrene in the appendix was found, with pus adhering to the surface of the intestines and a large amount of pus present in the abdominal cavity. Rhabdomyolysis syndrome developed after surgery. After continuous renal replacement therapy, the indicators gradually returned to normal. The patient was conscious, and the head CT results were normal. The patient was discharged from the hospital on the 19th day after surgery, and no special discomfort and abdominal pain and distension occurred during the 3-month follow-up.
Humans
;
Male
;
Adult
;
Tomography, X-Ray Computed
;
Sepsis/diagnostic imaging*
;
Multiple Organ Failure/etiology*
;
Subarachnoid Hemorrhage/complications*
3.Severe malnutrition during pregnancy complicated with acute pyelonephritis causing sepsis, refractory septic shock and multiple organ failure: A case report.
Fangfei XIE ; Hong QIAO ; Boya LI ; Cui YUAN ; Fang WANG ; Yu SUN ; Shuangling LI
Journal of Peking University(Health Sciences) 2025;57(1):202-207
This study reports the diagnosis and treatment of a 26-year-old pregnant woman with severe malnutrition combined with acute pyelonephritis causing sepsis, refractory septic shock and multiple organ failure. A female patient, 26 years old, was admitted to hospital mainly due to "menelipsis for more than 19 weeks, nausea and vomiting for 20 days, fever with fatigue for 3 days". At the end of 19 weeks of intrauterine pregnancy, the patient presented with fever accompanied by urinary tract irritation. Laboratory tests showed elevated inflammatory indicators, and ultrasonography showed bilateral pelvicalyceal dilation. She was diagnosed with acute pyelonephritis, sepsis, acute kidney injury (AKI) and severe malnutrition. After a whole-hospital consultation, the patient was treated with meropenem and vancomycin as antimicrobial therapy, and bilateral nephrostomy drainage was performed simultaneously. After that, the patient suffered a sudden decrease in blood pressure, blood oxygen saturation, and rapid heart rate. Septic shock with multiple organ dysfunction was considered, and she was transferred to intensive care unit (ICU) immediately. After the patient was transferred to ICU, emergency tracheal intubation and ventilator-assisted ventilation were performed. Rapid fluid resuscitation was administered for the patient. While pulse indicator continuous cardiac output (PICCO) monitoring was performed, norepinephrine, terlipressin, and methylene blue were administered to maintain peripheral vascular resistance. Since the patient developed septic cardiomyopathy and cardiogenic shock later, levosimendan and epinephrine were admi-nistered to improve cardiac function. While etiological specimens were delivered, meropenem, teicoplanin and caspofungin were given as initial empiric antimicrobial therapy. Unfortunately, the intrauterine fetal death occurred on the night of admission to ICU. On the 3rd day of ICU admission, a still-born child was delivered vaginally with 1/5 defect of the fetal membrane. On the 6th day of ICU admission, the patient had fever again with elevated inflammatory indicators. After excluding infection in other parts, intrau-terine infection caused by incomplete delivery of fetal membrane was considered. Then emergency uterine curettage was performed and the infection gradually improved. Later the laboratory results showed that the nephrostomy drainage was cultured for Escherichia coli and uterine, cervical and vaginal secretions were cultured for Candida albicans. Due to severe infection and intrauterine incomplete abortion, the patient developed disseminated intravascular coagulation (DIC). Active antimicrobial therapy and blood product supplement were given. However, the patient was critically ill with significant decrease in hemoglobin and platelets combined with multiple organ failure. Thrombotic microangiopathy (TMA) was not excluded yet, so plasma exchange was performed for the patient in order not to delay treatment. The patient underwent bedside continuous renal replacement therapy (CRRT) for AKI. The patient was complicated with acute liver injury, and the liver function gradually returned to normal after liver protection, antimicrobial therapy and other treatments. Due to the application of large doses of vasoactive drugs, the extremities of the patient gradually developed cyanosis and ischemic necrosis. Local dry gangrene of the bilateral toes remained at the time of discharge. In general, the patient suffered from septic shock, cardiogenic shock, combined with DIC and multiple organ dysfunction. After infection source control, antimicrobial therapy, uterine curettage, blood purification treatment, nutritional and metabolic support, the patient was discharged with a better health condition.
Humans
;
Female
;
Pyelonephritis/complications*
;
Pregnancy
;
Adult
;
Multiple Organ Failure/etiology*
;
Shock, Septic/etiology*
;
Sepsis/etiology*
;
Pregnancy Complications
;
Pregnancy Complications, Infectious
;
Malnutrition/complications*
4.Itaconic acid alleviates macrophage PANoptosis in sepsis-associated acute lung injury via inhibiting ninjurin-1-mediated plasma membrane rupture.
Mengrui CHEN ; Xiaohua TAN ; Wenjing ZHONG ; Hanxi SHA ; Liying LIANG ; Shaokun LIU
Journal of Central South University(Medical Sciences) 2025;50(6):970-985
OBJECTIVES:
Sepsis-associated acute lung injury (S-ALI) is one of the major causes of death in intensive care unit (ICU) patients, yet its mechanisms remain incompletely understood and effective therapies are lacking. Lytic cell death of macrophages is a key driver of the inflammatory cascade in S-ALI. PANoptosis, a newly recognized form of lytic cell death characterized by PANoptosome assembly and activation, involves plasma membrane rupture (PMR) mediated by ninjurin-1 (NINJ1), a recently identified pore-forming protein. Itaconic acid is known for its anti-inflammatory effects, but its role in macrophage PANoptosis during S-ALI is unclear. This study aims to investigate the protective effect of itaconic acid on macrophage PANoptosis in S-ALI to provide new therapeutic insights.
METHODS:
Male specific-pathogen-free C57BL/6J mice (6-8 weeks, 18-20 g) received intraperitoneal lipopolysaccharide (LPS) to establish a classical S-ALI model. Western blotting was used to assess PANoptosome-related proteins and enzymes involved in the itaconic acid metabolic pathway, while real-time reverse transcription polymerase chain reaction and metabolomics quantified itaconic acid levels. Primary peritoneal macrophages (PMs) were pretreated with the itaconate derivative 4-octyl itaconate (4-OI) and then exposed to tumor necrosis factor alpha (TNF-α) plus interferon gamma (IFN-γ) to induce PANoptosis. Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. Western blotting was employed to quantify enzymes of the itaconate-metabolic pathway in PANoptotic macrophages, to evaluate the impact of 4-OI on PANoptosome-associated proteins, and to determine NINJ1 abundance in lung tissues from S-ALI mice and in PANoptotic macrophages. Fluorescent dye FM4-64 was used to visualize 4-OI-mediated changes in PMR, whereas immunofluorescence staining mapped the effect of 4-OI on both the expression level and membrane localization of NINJ1 in PANoptotic macrophages. The effect of 4-OI on lactate dehydrogenase (LDH) release in culture supernatants and peripheal blood serum was assessed using a LDH assay kit, and non-denataring polyacylamide gel electrophoresis was used to assess the expression of NINJ1 in S-ALI mouse lung tissues and the impact of 4-OI on the expression of PANoptosis-associated NINJ1 multimeric reflected protein in macropahges.
RESULTS:
In S-ALI mouse lungs, PANoptosome components [NOD-like receptor thermal protein domain associated protein 3 (NLRP3), Gasdermin D (GSDMD), Caspase-1, Z-DNA binding protein (ZBP1), and Caspase-3] and phosphorylated mixed lineage kinase domain-like protein (MLKL) S345 were significantly upregulated (all P<0.05), while metabolomics showed compensatory increases in itaconic acid and its key enzymes [aconitate decarboxylase 1 (ACOD1)/immunoresponsive gene 1 (IRG1)]. In macrophages, 4-OI obviously suppressed PANoptosome protein expression, reduced LDH release, restored plasma membrane integrity, and inhibited NINJ1 expression and oligomerization at the membrane (P<0.05).
CONCLUSIONS
Itaconic acid may alleviate macrophage PANoptosis in S-ALI by inhibiting NINJ1-mediated plasma membrane rupture. Targeting NINJ1 or enhancing itaconate pathways may offer a novel therapeutic strategy for S-ALI.
Animals
;
Acute Lung Injury/pathology*
;
Succinates/pharmacology*
;
Sepsis/complications*
;
Mice, Inbred C57BL
;
Male
;
Mice
;
Macrophages/pathology*
;
Cell Membrane/metabolism*
;
Lipopolysaccharides
;
Hydro-Lyases
5.Nomogram and machine learning models for predicting in-hospital mortality in sepsis patients with deep vein thrombosis.
Hongwei DUAN ; Huaizheng LIU ; Chuanzheng SUN ; Jing QI
Journal of Central South University(Medical Sciences) 2025;50(6):1013-1029
OBJECTIVES:
Global epidemiological data indicate that 20% to 30% of intensive care unit (ICU) sepsis patients progress to deep vein thrombosis (DVT) due to coagulopathy, with an associated mortality rate of 25% to 40%. Existing prognostic tools have limitations. This study aims to develop and validate nomogram and machine learning models to predict in-hospital mortality in sepsis patients with DVT and assess their clinical applicability.
METHODS:
This multicenter retrospective study drew on data from the Medical Information Mart for Intensive Care IV (MIMIC-IV; n=2 235), the eICU Collaborative Research Database (eICU-CRD; n=1 274), and the Patient Admission Dataset from the ICU of Third Xiangya Hospital, Central South University (CSU-XYS-ICU; n=107). MIMIC-IV was split into a training set (n=1 584) and internal validation set (n=651), with the remaining datasets used for external validation. Predictors were selected via least absolute shrinkage and selection operator (LASSO) regression and Bayesian Information Criterion (BIC), and a nomogram model was constructed. An extreme gradient boosting (XGBoost) algorithm was used to build the machine learning model. Model performance was assessed by the concordance index (C-index), calibration curves, Brier score, decision curve analysis (DCA), and net reclassification improvement index (NRI).
RESULTS:
Five key predictors, age [odds ratio (OR)=1.02, 95% CI 1.01 to 1.03, P<0.001], minimum activated partial thromboplastin (APTT; OR=1.09, 95% CI 1.08 to 1.11, P<0.001), maximum APTT (OR=1.01, 95% CI 1.00 to 1.01, P<0.001), maximum lactate (OR=1.56, 95% CI 1.39 to 1.75, P<0.001), and maximum serum creatinine (OR=2.03, 95% CI 1.79 to 2.30, P<0.001), were included in the nomogram. The model showed robust performance in internal validation (C-index=0.845, 95% CI 0.811 to 0.879) and external validation (eICU-CRD: C-index=0.827, 95% CI 0.800 to 0.854; CSU-XYS-ICU: C-index=0.779, 95% CI 0.687 to 0.871). Calibration curves indicated good agreement between predicted and observed outcomes (Brier score<0.25), and DCA confirmed clinical benefit. The XGBoost model achieved an area under the receiver operating characteristic curve (AUC) of 0.982 (95% CI 0.969 to 0.985) in the training set, but performance declined in external validation (eICU-CRD, AUC=0.825, 95% CI 0.817 to 0.861; CSU-XYS-ICU, AUC=0.766, 95% CI 0.700 to 0.873), though it remained above clinical thresholds. Net reclassification improvement was slightly lower for XGBoost compared with the nomogram (NRI=0.58).
CONCLUSIONS
Both the nomogram and XGBoost models effectively predict in-hospital mortality in sepsis patients with DVT. However, the nomogram offers superior generalizability and clinical usability. Its visual scoring system provides a quantitative tool for identifying high-risk patients and implementing individualized interventions.
Humans
;
Sepsis/complications*
;
Machine Learning
;
Nomograms
;
Venous Thrombosis/complications*
;
Retrospective Studies
;
Hospital Mortality
;
Male
;
Female
;
Middle Aged
;
Aged
;
Intensive Care Units
;
Prognosis
;
Bayes Theorem
6.Verification of resveratrol ameliorating vascular endothelial damage in sepsis-associated encephalopathy through HIF-1α pathway based on network pharmacology and experiment.
Rong LI ; Yue WU ; Wen-Xuan ZHU ; Meng QIN ; Si-Yu SUN ; Li-Ya WANG ; Mei-Hui TIAN ; Ying YU
China Journal of Chinese Materia Medica 2025;50(4):1087-1097
This study aims to investigate the mechanism by which resveratrol(RES) alleviates cerebral vascular endothelial damage in sepsis-associated encephalopathy(SAE) through network pharmacology and animal experiments. By using network pharmacology, the study identified common targets and genes associated with RES and SAE and constructed a protein-protein interaction( PPI) network. Gene Ontology(GO) analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed to pinpoint key signaling pathways, followed by molecular docking validation. In the animal experiments, a cecum ligation and puncture(CLP) method was employed to induce SAE in mice. The mice were randomly assigned to the sham group, CLP group, and medium-dose and high-dose groups of RES. The sham group underwent open surgery without CLP, and the CLP group received an intraperitoneal injection of 0. 9% sodium chloride solution after surgery. The medium-dose and high-dose groups of RES were injected intraperitoneally with 40 mg·kg-1 and 60 mg·kg~(-1) of RES after modeling, respectively, and samples were collected 12 hours later. Neurological function scores were assessed, and the wet-dry weight ratio of brain tissue was detected. Serum superoxide dismutase(SOD), catalase( CAT) activity, and malondialdehyde( MDA) content were measured by oxidative stress kit. Histopathological changes in brain tissue were examined using hematoxylin-eosin(HE) staining. Transmission electron microscopy was employed to evaluate tight cell junctions and mitochondrial ultrastructure changes in cerebral vascular endothelium. Western blot analysis was performed to detect the expression of zonula occludens1( ZO-1), occludin, claudins-5, optic atrophy 1( OPA1), mitofusin 2(Mfn2), dynamin-related protein 1(Drp1), fission 1(Fis1), and hypoxia-inducible factor-1α(HIF-1α). Network pharmacology identified 76 intersecting targets for RES and SAE, with the top five core targets being EGFR, PTGS2, ESR1, HIF-1α, and APP. GO enrichment analysis showed that RES participated in the SAE mechanism through oxidative stress reaction. KEGG enrichment analysis indicated that RES participated in SAE therapy through HIF-1α, Rap1, and other signaling pathways. Molecular docking results showed favorable docking activity between RES and key targets such as HIF-1α. Animal experiment results demonstrated that compared to the sham group, the CLP group exhibited reduced nervous reflexes, decreased water content in brain tissue, as well as serum SOD and CAT activity, and increased MDA content. In addition, the CLP group exhibited disrupted tight junctions in cerebral vascular endothelium and abnormal mitochondrial morphology. The protein expression levels of Drp1, Fis1, and HIF-1α in brain tissue were increased, while those of ZO-1, occludin, claudin-5, Mfn2, and OPA1 were decreased. In contrast, the medium-dose and high-dose groups of RES showed improved neurological function, increased water content in brain tissue and SOD and CAT activity, and decreased MDA content. Cell morphology in brain tissue, tight junctions between endothelial cells, and mitochondrial structure were improved. The protein expressions of Drp1, Fis1, and HIF-1α were decreased, while those of ZO-1, occludin, claudin-5, Mfn2, and OPA1 were increased. This study suggested that RES could ameliorate cerebrovascular endothelial barrier function and maintain mitochondrial homeostasis by inhibiting oxidative stress after SAE damage, potentially through modulation of the HIF-1α signaling pathway.
Animals
;
Mice
;
Network Pharmacology
;
Resveratrol/administration & dosage*
;
Male
;
Sepsis-Associated Encephalopathy/genetics*
;
Signal Transduction/drug effects*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Endothelium, Vascular/metabolism*
;
Molecular Docking Simulation
;
Protein Interaction Maps/drug effects*
;
Humans
;
Sepsis/complications*
;
Oxidative Stress/drug effects*
7.Research progress on ICU-acquired weakness in sepsis patients.
Huiyao CHEN ; Xingsong LI ; Lixin ZHOU ; Xinhua QIANG
Chinese Critical Care Medicine 2025;37(1):87-91
With the development of critical medical emergency technology, the success rate of sepsis treatment has been significantly improved, and the improvement of the long-term quality of life of sepsis survivors has also attracted more and more attention. ICU-acquired weakness (ICU-AW) refers to a group of syndromes with systemic and symmetrical muscle weakness during the intensive care unit (ICU) hospitalization and cannot be explained by the patient's own disease, which often involve diaphragm and skeletal muscle, resulting in difficulty in weaning and nosocomial infection. The incidence of ICU-AW in sepsis patients is over 50%, making it an important factor affecting the prognosis of these patients. The occurrence of sepsis ICU-AW is related to many factors, which can be summarized into two categories, including sepsis-related factors such as sepsis-associated inflammatory response, sepsis-associated encephalopathy (SAE), and treatment-related factors such as physical immobilization and insufficient nutritional support. The current ICU-AW risk assessment tools are mainly on subjective assessment scales, but there are some limitations in clinical application, and objective assessment tools including predictive model and imaging assessment, which are still in the research stage. "ABCDEF bundle strategy" is an important measure to prevent ICU-AW, in which early rehabilitation is the core element. This review of the literature from the risk factors, risk assessment and early rehabilitation of ICU-AW, and focuses on the timing, content, method and safety assessment of early rehabilitation, aims to improve the understanding of ICU-AW, strengthen the prevention of sepsis with ICU-AW, and improve the prognosis of sepsis patients, not only survive, but also live better.
Humans
;
Sepsis/complications*
;
Muscle Weakness/etiology*
;
Intensive Care Units
;
Prognosis
;
Quality of Life
8.Development and validation of a nomogram prediction model for in-hospital mortality risk in patients with sepsis complicated with acute pulmonary embolism.
Li HUANG ; Zhengbin WANG ; Yan ZHANG ; Xiao YUE ; Shuo WANG ; Yanxia GAO
Chinese Critical Care Medicine 2025;37(2):123-127
OBJECTIVE:
To explore the risk factors affecting the prognosis of patients with sepsis complicated with acute pulmonary embolism, and to construct and validate a nomogram predictive model for in-hospital mortality risk.
METHODS:
Based on the American Medical Information Mart for Intensive Care (MIMIC-III, MIMIC-IV) databases, the data were collected on patients with sepsis complicated with acute pulmonary embolism from 2001 to 2019, including baseline characteristics, and vital signs, disease scores, laboratory tests within 24 hours of admission to the intensive care unit (ICU), and interventions. In-hospital mortality was the outcome event. The total samples were divided into training and testing sets in a 7:3 ratio by random sampling. Univariate Cox regression analysis was used to verify the impact of all variables on the risk of in-hospital mortality, thereby screen potential influencing factors. Subsequently, a stepwise bi-directional regression method was applied to select factors one by one, leading to the construction of a nomogram prediction model. Collinearity testing was used to demonstrate the absence of strong multicollinearity among the influencing factors in the nomogram prediction model. The discrimination of the nomogram model, sequential organ failure assessment (SOFA), and simplified pulmonary embolism severity index (sPESI) was evaluated using C-index in the test set. Receiver operator characteristic curve (ROC curve) was drawn to evaluate the predictive value of various models for in-hospital mortality in patients with sepsis complicated with acute pulmonary embolism.
RESULTS:
A total of 562 patients with sepsis complicated with acute pulmonary embolism were included, including 393 in the training set and 169 in the testing set. Univariate Cox regression analysis showed that 30 factors associated with in-hospital mortality in patients with sepsis complicated with acute pulmonary embolism. Through stepwise bi-directional regression, 12 variables were ultimately selected, including gender, presence of malignant tumors, body temperature, red cell distribution width (RDW), blood urea nitrogen (BUN), serum potassium, prothrombin time (PT), 24-hour urine output, mechanical ventilation, vasoactive drugs, warfarin use, and sepsis-induced coagulopathy (SIC). Collinearity testing indicated no strong multicollinearity among the influencing factors [all variance inflation factor (VIF) > 10]. A nomogram model was constructed using the 12 variables mentioned above. The nomogram model predicted the C-index and its 95% confidence interval (95%CI) of in-hospital mortality in patients with sepsis complicated with acute pulmonary embolism better than SOFA score and sPESI [0.771 (0.725-0.816) vs. 0.579 (0.519-0.639), 0.608 (0.554-0.663)]. The ROC curve showed that the area under the curve (AUC) and its 95%CI of the nomogram model were higher than those of the SOFA score and sPESI [0.811 (0.766-0.857) vs. 0.630 (0.568-0.691), 0.623 (0.566-0.680)]. These findings were consistently replicated in the internal validation of the testing set. In both the training and testing sets, Delong's test showed that the AUC of the nomogram model was significantly higher than the SOFA score and sPESI (both P < 0.05).
CONCLUSION
The nomogram model demonstrated good predictive effectiveness for the risk of in-hospital mortality in patients with sepsis complicated with acute pulmonary embolism, enabling clinicians to predict mortality risk in advance and take timely interventions to reduce mortality.
Humans
;
Pulmonary Embolism/mortality*
;
Hospital Mortality
;
Nomograms
;
Sepsis/complications*
;
Prognosis
;
Risk Factors
;
Intensive Care Units
;
Male
;
Female
;
Middle Aged
;
Aged
9.The advances on autophagy the pathogenesis and treatment in septic acute kidney injury.
Ziyou TIAN ; Jie ZHANG ; Shiqi NIE ; Daihua DENG ; Zhu LI ; Lili TANG ; Xiaoyue LI
Chinese Critical Care Medicine 2025;37(2):183-187
Sepsis is a life-threatening organ dysfunction syndrome caused by a dysregulated host response to infection. Septic acute kidney injury (SAKI) is one of the most common complications of sepsis, and the occurrence of acute kidney injury (AKI) indicates that the patient's condition is critical with a poor prognosis. The traditional view holds that the main mechanism of SAKI is the reduction of renal blood flow, inadequate renal perfusion, inflammatory response, and microcirculatory dysfunction caused by sepsis, which subsequently leads to ischemia and necrosis of renal tubular cells. Recent research findings indicate that processes such as autophagy and other forms of programmed cell death play an increasingly important role. Autophagy is a programmed intracellular degradation process and is a form of programmed cell death. Cells degrade their cytoplasmic components via lysosomes, breaking down and recycling intracellular constituents to meet their metabolic needs, maintain intracellular homeostasis, and renew organelles. During SAKI, autophagy plays a crucial protective role through various mechanisms, including regulating inflammation and immune responses, clearing damaged organelles, and maintaining stability in the intracellular environment. In recent years, the role of autophagy in the pathogenesis and treatment of SAKI has received widespread attention. Research has confirmed that various intracellular signaling pathways and signaling molecules targeting autophagy [such as mammalian target of rapamycin (mTOR) signaling pathway, AMP-activated protein kinase (AMPK) signaling pathway, nuclear factor-κB (NF-κB) signaling pathway, and Sirtuins (SIRT), autophagy associated factor Beclin-1, and Toll-like receptor (TLR)] are involved in the development of SAKI. Due to the complex pathogenesis of SAKI, current treatment strategies include fluid management, infection control, maintenance of internal environment balance, and renal replacement therapy; however, the mortality remains high. In recent years, it has been found that autophagy plays a critical protective role in sepsis-mediated AKI. As a result, an increasing number of drugs are being developed to alleviate SAKI by regulating autophagy. This article reviews the latest advances in the role of autophagy in the pathogenesis and treatment of SAKI, with the aim of providing insights for the development of new drugs for SAKI patients.
Humans
;
Acute Kidney Injury/etiology*
;
Autophagy
;
Sepsis/complications*
;
Signal Transduction
10.Current status and visual analysis of the burn-related sepsis.
Like ZHANG ; Wei YI ; Lijing ZHU ; Weibo XIE ; Zhicheng GU ; Guosheng WU ; Zhaofan XIA
Chinese Critical Care Medicine 2025;37(3):255-261
OBJECTIVE:
To explore the current status, evolution, hot topics, and future research trends in the field of burn-related sepsis research through a visual analysis of literature.
METHODS:
A bibliometric method was employed to retrieve articles related to burn-related sepsis from January 1, 1994, to May 16, 2024, in the China National Knowledge Infrastructure (CNKI) and the Web of Science database. The CiteSpace 6.3.R1 software was used to analyze the retrieved literature. The number of publications, authors, countries, and institutions in both Chinese and English literature was statistically analyzed. Co-occurrence analysis, clustering analysis, and co-citation analysis of keywords were performed.
RESULTS:
A total of 1 090 articles from the CNKI database and 1 143 articles from the Web of Science database were retrieved. Over the past 20 years, the volume of Chinese publications has remained stable, although there has been a slight decline in the past two years. In contrast, the number of English publications, after a period of growth, showed a sharp decline over the past three years. In Chinese literature, 1 457 authors published articles on burn-related sepsis as first authors, with 14 core authors publishing four or more articles. In English literature, 98 authors published articles on burn-related sepsis as first authors. Research on burn-related sepsis was conducted by 76 countries, with the United States having the most collaborations and publications. Globally, 1 349 institutions published articles on burn-related sepsis, with the top institutions being the First Affiliated Hospital of the PLA General Hospital (8 articles) for Chinese literature and the University of Texas Medical Branch (57 articles) for English literature. In the co-occurrence analysis, 208 Chinese keywords and 211 English keywords were included. Excluding keywords related to search terms, the top five most frequent keywords in Chinese literature were burn, sepsis, infection, severe burn, and procalcitonin; the top five most frequent keywords in English literature were sepsis, septic shock, mortality, injury, and burn injury. Chinese keyword analysis identified six clusters, with the largest being sepsis, followed by procalcitonin, infection, and severe burn. English keyword analysis identified seven clusters, with the largest being expression, followed by epidemiology, inhalation injury, and acute kidney injury. The persistent clusters in Chinese literature were procalcitonin, with recent emerging nodes being severe burn, inflammatory response, platelets, and predictive value. In English literature, the persistent clusters were inhalation injury and nitric oxide, with recent emerging nodes being continuous renal replacement therapy, hemorrhagic shock, and early enteral nutrition. The longest-lasting emergent keyword in Chinese literature was delayed resuscitation (2003-2010), with the highest emergent strength being severe burn. In English literature, the longest-lasting emergent keywords, each lasting five years, were nitric oxide (2007-2012), management (2019-2024), and impact (2019-2024), with the highest emergent strength being thermal injury.
CONCLUSIONS
Research on burn-related sepsis has shifted from focusing on early studies on pathogenesis and mortality to focus on prevention, treatment, and early diagnosis. Future research is expected to focus on early diagnosis and risk factors of burn-related sepsis.
Burns/complications*
;
Sepsis/etiology*
;
Humans
;
Bibliometrics
;
China

Result Analysis
Print
Save
E-mail