1.Radiation-Induced Meningiomas Have an Aggressive Clinical Course:Genetic Signature Is Limited to NF2Alterations, and Epigenetic Signature Is H3K27me3 Loss
Tae-Kyun KIM ; Jong Seok LEE ; Ji Hoon PHI ; Seung Ah CHOI ; Joo Whan KIM ; Chul-Kee PARK ; Hongseok YUN ; Young-Soo PARK ; Sung-Hye PARK ; Seung-Ki KIM
Journal of Korean Medical Science 2025;40(18):e62-
Background:
While the clinical course of radiation-induced meningioma (RIM) is considered to be more aggressive than that of sporadic meningioma (SM), the genetic predisposition for RIM is not established well. The present study aimed to analyze the clinical and genetic characteristics of RIMs to increase understanding of the tumorigenesis and prognosis of RIMs. Methods: We investigated a database of 24 patients who met the RIM criteria between January 2000 and April 2023. Genetic analysis through next-generation sequencing with a targeted gene panel was performed on 10 RIM samples. Clinical, radiological, and pathological parameters were evaluated with genetic analyses.
Results:
The median ages for receiving radiotherapy (RT) and RIM diagnosis were 8.0 and 27.5 years, respectively, with an interval of 17.5 years between RT and RIM diagnosis. RIMs tended to develop in non-skull bases and multifocal locations. Most primary pathologies included germ cell tumors and medulloblastoma. The tumor growth rate was 3.83 cm 3 per year, and the median doubling time was 0.8 years. All patients underwent surgical resection of RIMs. The histological grade of RIMs was World Health Organization grade 1 (64%) or 2 (36%). RIMs showed higher incidences in young-age (63%), high-dose (75%), and extendedfield (79%) RT groups. The recurrence rate was 21%. Genetic analysis revealed NF2 one copy loss in 90% of the patients, with truncating NF2 mutations and additional copy number aberrations in grade 2 RIMs. TERT promoter mutation and CDKN2A/B deletion were not identified. Notably, loss of H3K27me3 was identified in 26% of RIMs. H3K27me3 loss was associated with a higher prevalence of grade 2 RIMs (67%) and high recurrence rates (33%).
Conclusion
The study reveals a higher prevalence of high-grade tumors among RIMs with more rapid growth and higher recurrences than SMs. Genetically, RIMs are primarily associated with NF-2 alterations with chromosomal abnormalities in grade 2 tumors, along with a higher proportion of H3K27me3 loss.
2.Radiation-Induced Meningiomas Have an Aggressive Clinical Course:Genetic Signature Is Limited to NF2Alterations, and Epigenetic Signature Is H3K27me3 Loss
Tae-Kyun KIM ; Jong Seok LEE ; Ji Hoon PHI ; Seung Ah CHOI ; Joo Whan KIM ; Chul-Kee PARK ; Hongseok YUN ; Young-Soo PARK ; Sung-Hye PARK ; Seung-Ki KIM
Journal of Korean Medical Science 2025;40(18):e62-
Background:
While the clinical course of radiation-induced meningioma (RIM) is considered to be more aggressive than that of sporadic meningioma (SM), the genetic predisposition for RIM is not established well. The present study aimed to analyze the clinical and genetic characteristics of RIMs to increase understanding of the tumorigenesis and prognosis of RIMs. Methods: We investigated a database of 24 patients who met the RIM criteria between January 2000 and April 2023. Genetic analysis through next-generation sequencing with a targeted gene panel was performed on 10 RIM samples. Clinical, radiological, and pathological parameters were evaluated with genetic analyses.
Results:
The median ages for receiving radiotherapy (RT) and RIM diagnosis were 8.0 and 27.5 years, respectively, with an interval of 17.5 years between RT and RIM diagnosis. RIMs tended to develop in non-skull bases and multifocal locations. Most primary pathologies included germ cell tumors and medulloblastoma. The tumor growth rate was 3.83 cm 3 per year, and the median doubling time was 0.8 years. All patients underwent surgical resection of RIMs. The histological grade of RIMs was World Health Organization grade 1 (64%) or 2 (36%). RIMs showed higher incidences in young-age (63%), high-dose (75%), and extendedfield (79%) RT groups. The recurrence rate was 21%. Genetic analysis revealed NF2 one copy loss in 90% of the patients, with truncating NF2 mutations and additional copy number aberrations in grade 2 RIMs. TERT promoter mutation and CDKN2A/B deletion were not identified. Notably, loss of H3K27me3 was identified in 26% of RIMs. H3K27me3 loss was associated with a higher prevalence of grade 2 RIMs (67%) and high recurrence rates (33%).
Conclusion
The study reveals a higher prevalence of high-grade tumors among RIMs with more rapid growth and higher recurrences than SMs. Genetically, RIMs are primarily associated with NF-2 alterations with chromosomal abnormalities in grade 2 tumors, along with a higher proportion of H3K27me3 loss.
3.Incidence and mortality of upper tract urothelial carcinoma in Korea: A nationwide population-based study conducted from 2002 to 2020
Seongmin MOON ; Yun-Sok HA ; Mina KIM ; Hoseob KIM ; Won Tae KIM ; Yong-June KIM ; Seok-Joong YUN ; Sang-Cheol LEE ; Ho Won KANG
Investigative and Clinical Urology 2025;66(1):11-17
Purpose:
To describe the incidence and mortality of upper tract urothelial carcinoma (UTUC) from 2002–2020 using data from the Korean National Health Insurance Service, which contains data from the entire Korean population.
Materials and Methods:
Reimbursement records for 43,255 patients diagnosed with primary UTUC (according to the International Classification of Disease 10th revision code C65 and C66) between 2002–2020 were retrieved. The study period was split into four: period I (2002–2005), period II (2006–2010), period III (2011–2015), and period IV (2016–2020). Trends were quantified by calculating the annual percentage change (APC). Mortality data were obtained from the Statistics Korea.
Results:
From 2002–2020, the incidence of UTUC in Korea increased gradually from 9.34 to 11.40 per 100,000 person-years. Although there was a male predominance, the male to female ratio did not change significantly over time; however, age at the time of diagnosis, the comorbidity index, and the proportion of patients undergoing open/laparoscopic surgery increased significantly over time. There was a modest improvement in 5-year survival (both all cause- and cancer-specific) over the study period. Multivariate analysis identified age at diagnosis, sex, the comorbidity index, and open/laparoscopic surgery as being associated with survival.
Conclusions
Between 2002 and 2020, the incidence of UTUC in Korea showed a general upward trend; however, survival outcomes have improved. These representative datasets from the Korean population might provide crucial information that enables clinicians to better understand of the epidemiology of UTUC in Korea.
4.Optimizing extraction of microbial DNA from urine: Advancing urinary microbiome research in bladder cancer
Chuang-Ming ZHENG ; Ho Won KANG ; Seongmin MOON ; Young Joon BYUN ; Won Tae KIM ; Yung Hyun CHOI ; Sung-Kwon MOON ; Xuan-Mei PIAO ; Seok Joong YUN
Investigative and Clinical Urology 2025;66(3):272-280
Purpose:
This study aimed to evaluate and optimize microbial DNA extraction methods from urine, a non-invasive sample source, to enhance DNA quality, purity, and reliability for urinary microbiome research and biomarker discovery in bladder cancer.
Materials and Methods:
A total of 302 individuals (258 with genitourinary cancers and 44 with benign urologic diseases) participated in this study. Urine samples were collected via sterile catheterization, resulting in 445 vials for microbial analysis. DNA extraction was performed using three protocols: the standard protocol (SP), water dilution protocol (WDP), and chelation-assisted protocol (CAP). DNA quality (concentration, purity, and contamination levels) was assessed using NanoDrop spectrophotometry.Microbial analysis was conducted on 138 samples (108 cancerous and 30 benign) using 16S rRNA sequencing. Prior to sequencing on the Illumina MiSeq platform, Victor 3 fluorometry was used for validation.
Results:
WDP outperformed other methods, achieving significantly higher 260/280 and 260/230 ratios, indicating superior DNA purity and reduced contamination, while maintaining reliable DNA yields. CAP was excluded due to poor performance across all metrics. Microbial abundance was significantly higher in WDP-extracted samples (p<0.0001), whereas SP demonstrated higher alpha diversity indices (p<0.01), likely due to improved detection of low-abundance taxa. Beta diversity analysis showed no significant compositional differences between SP and WDP (p=1.0), supporting the reliability of WDP for microbiome research.
Conclusions
WDP is a highly effective and reliable method for microbial DNA extraction from urine, ensuring high-quality and reproducible results. Future research should address sample variability and crystal precipitation to further refine microbiome-based diagnostics and therapeutics.
5.Radiation-Induced Meningiomas Have an Aggressive Clinical Course:Genetic Signature Is Limited to NF2Alterations, and Epigenetic Signature Is H3K27me3 Loss
Tae-Kyun KIM ; Jong Seok LEE ; Ji Hoon PHI ; Seung Ah CHOI ; Joo Whan KIM ; Chul-Kee PARK ; Hongseok YUN ; Young-Soo PARK ; Sung-Hye PARK ; Seung-Ki KIM
Journal of Korean Medical Science 2025;40(18):e62-
Background:
While the clinical course of radiation-induced meningioma (RIM) is considered to be more aggressive than that of sporadic meningioma (SM), the genetic predisposition for RIM is not established well. The present study aimed to analyze the clinical and genetic characteristics of RIMs to increase understanding of the tumorigenesis and prognosis of RIMs. Methods: We investigated a database of 24 patients who met the RIM criteria between January 2000 and April 2023. Genetic analysis through next-generation sequencing with a targeted gene panel was performed on 10 RIM samples. Clinical, radiological, and pathological parameters were evaluated with genetic analyses.
Results:
The median ages for receiving radiotherapy (RT) and RIM diagnosis were 8.0 and 27.5 years, respectively, with an interval of 17.5 years between RT and RIM diagnosis. RIMs tended to develop in non-skull bases and multifocal locations. Most primary pathologies included germ cell tumors and medulloblastoma. The tumor growth rate was 3.83 cm 3 per year, and the median doubling time was 0.8 years. All patients underwent surgical resection of RIMs. The histological grade of RIMs was World Health Organization grade 1 (64%) or 2 (36%). RIMs showed higher incidences in young-age (63%), high-dose (75%), and extendedfield (79%) RT groups. The recurrence rate was 21%. Genetic analysis revealed NF2 one copy loss in 90% of the patients, with truncating NF2 mutations and additional copy number aberrations in grade 2 RIMs. TERT promoter mutation and CDKN2A/B deletion were not identified. Notably, loss of H3K27me3 was identified in 26% of RIMs. H3K27me3 loss was associated with a higher prevalence of grade 2 RIMs (67%) and high recurrence rates (33%).
Conclusion
The study reveals a higher prevalence of high-grade tumors among RIMs with more rapid growth and higher recurrences than SMs. Genetically, RIMs are primarily associated with NF-2 alterations with chromosomal abnormalities in grade 2 tumors, along with a higher proportion of H3K27me3 loss.
6.Radiation-Induced Meningiomas Have an Aggressive Clinical Course:Genetic Signature Is Limited to NF2Alterations, and Epigenetic Signature Is H3K27me3 Loss
Tae-Kyun KIM ; Jong Seok LEE ; Ji Hoon PHI ; Seung Ah CHOI ; Joo Whan KIM ; Chul-Kee PARK ; Hongseok YUN ; Young-Soo PARK ; Sung-Hye PARK ; Seung-Ki KIM
Journal of Korean Medical Science 2025;40(18):e62-
Background:
While the clinical course of radiation-induced meningioma (RIM) is considered to be more aggressive than that of sporadic meningioma (SM), the genetic predisposition for RIM is not established well. The present study aimed to analyze the clinical and genetic characteristics of RIMs to increase understanding of the tumorigenesis and prognosis of RIMs. Methods: We investigated a database of 24 patients who met the RIM criteria between January 2000 and April 2023. Genetic analysis through next-generation sequencing with a targeted gene panel was performed on 10 RIM samples. Clinical, radiological, and pathological parameters were evaluated with genetic analyses.
Results:
The median ages for receiving radiotherapy (RT) and RIM diagnosis were 8.0 and 27.5 years, respectively, with an interval of 17.5 years between RT and RIM diagnosis. RIMs tended to develop in non-skull bases and multifocal locations. Most primary pathologies included germ cell tumors and medulloblastoma. The tumor growth rate was 3.83 cm 3 per year, and the median doubling time was 0.8 years. All patients underwent surgical resection of RIMs. The histological grade of RIMs was World Health Organization grade 1 (64%) or 2 (36%). RIMs showed higher incidences in young-age (63%), high-dose (75%), and extendedfield (79%) RT groups. The recurrence rate was 21%. Genetic analysis revealed NF2 one copy loss in 90% of the patients, with truncating NF2 mutations and additional copy number aberrations in grade 2 RIMs. TERT promoter mutation and CDKN2A/B deletion were not identified. Notably, loss of H3K27me3 was identified in 26% of RIMs. H3K27me3 loss was associated with a higher prevalence of grade 2 RIMs (67%) and high recurrence rates (33%).
Conclusion
The study reveals a higher prevalence of high-grade tumors among RIMs with more rapid growth and higher recurrences than SMs. Genetically, RIMs are primarily associated with NF-2 alterations with chromosomal abnormalities in grade 2 tumors, along with a higher proportion of H3K27me3 loss.
7.Liberation from mechanical ventilation in critically ill patients: Korean Society of Critical Care Medicine Clinical Practice Guidelines
Tae Sun HA ; Dong Kyu OH ; Hak-Jae LEE ; Youjin CHANG ; In Seok JEONG ; Yun Su SIM ; Suk-Kyung HONG ; Sunghoon PARK ; Gee Young SUH ; So Young PARK
Acute and Critical Care 2024;39(1):1-23
Successful liberation from mechanical ventilation is one of the most crucial processes in critical care because it is the first step by which a respiratory failure patient begins to transition out of the intensive care unit and return to their own life. Therefore, when devising appropriate strategies for removing mechanical ventilation, it is essential to consider not only the individual experiences of healthcare professionals, but also scientific and systematic approaches. Recently, numerous studies have investigated methods and tools for identifying when mechanically ventilated patients are ready to breathe on their own. The Korean Society of Critical Care Medicine therefore provides these recommendations to clinicians about liberation from the ventilator. Methods: Meta-analyses and comprehensive syntheses were used to thoroughly review, compile, and summarize the complete body of relevant evidence. All studies were meticulously assessed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) method, and the outcomes were presented succinctly as evidence profiles. Those evidence syntheses were discussed by a multidisciplinary committee of experts in mechanical ventilation, who then developed and approved recommendations. Results: Recommendations for nine PICO (population, intervention, comparator, and outcome) questions about ventilator liberation are presented in this document. This guideline includes seven conditional recommendations, one expert consensus recommendation, and one conditional deferred recommendation. Conclusions: We developed these clinical guidelines for mechanical ventilation liberation to provide meaningful recommendations. These guidelines reflect the best treatment for patients seeking liberation from mechanical ventilation.
8.Liberation from mechanical ventilation in critically ill patients: Korean Society of Critical Care Medicine Clinical Practice Guidelines
Tae Sun HA ; Dong Kyu OH ; Hak-Jae LEE ; Youjin CHANG ; In Seok JEONG ; Yun Su SIM ; Suk-Kyung HONG ; Sunghoon PARK ; Gee Young SUH ; So Young PARK
Acute and Critical Care 2024;39(1):1-23
Successful liberation from mechanical ventilation is one of the most crucial processes in critical care because it is the first step by which a respiratory failure patient begins to transition out of the intensive care unit and return to their own life. Therefore, when devising appropriate strategies for removing mechanical ventilation, it is essential to consider not only the individual experiences of healthcare professionals, but also scientific and systematic approaches. Recently, numerous studies have investigated methods and tools for identifying when mechanically ventilated patients are ready to breathe on their own. The Korean Society of Critical Care Medicine therefore provides these recommendations to clinicians about liberation from the ventilator. Methods: Meta-analyses and comprehensive syntheses were used to thoroughly review, compile, and summarize the complete body of relevant evidence. All studies were meticulously assessed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) method, and the outcomes were presented succinctly as evidence profiles. Those evidence syntheses were discussed by a multidisciplinary committee of experts in mechanical ventilation, who then developed and approved recommendations. Results: Recommendations for nine PICO (population, intervention, comparator, and outcome) questions about ventilator liberation are presented in this document. This guideline includes seven conditional recommendations, one expert consensus recommendation, and one conditional deferred recommendation. Conclusions: We developed these clinical guidelines for mechanical ventilation liberation to provide meaningful recommendations. These guidelines reflect the best treatment for patients seeking liberation from mechanical ventilation.
9.Liberation from mechanical ventilation in critically ill patients: Korean Society of Critical Care Medicine Clinical Practice Guidelines
Tae Sun HA ; Dong Kyu OH ; Hak-Jae LEE ; Youjin CHANG ; In Seok JEONG ; Yun Su SIM ; Suk-Kyung HONG ; Sunghoon PARK ; Gee Young SUH ; So Young PARK
Acute and Critical Care 2024;39(1):1-23
Successful liberation from mechanical ventilation is one of the most crucial processes in critical care because it is the first step by which a respiratory failure patient begins to transition out of the intensive care unit and return to their own life. Therefore, when devising appropriate strategies for removing mechanical ventilation, it is essential to consider not only the individual experiences of healthcare professionals, but also scientific and systematic approaches. Recently, numerous studies have investigated methods and tools for identifying when mechanically ventilated patients are ready to breathe on their own. The Korean Society of Critical Care Medicine therefore provides these recommendations to clinicians about liberation from the ventilator. Methods: Meta-analyses and comprehensive syntheses were used to thoroughly review, compile, and summarize the complete body of relevant evidence. All studies were meticulously assessed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) method, and the outcomes were presented succinctly as evidence profiles. Those evidence syntheses were discussed by a multidisciplinary committee of experts in mechanical ventilation, who then developed and approved recommendations. Results: Recommendations for nine PICO (population, intervention, comparator, and outcome) questions about ventilator liberation are presented in this document. This guideline includes seven conditional recommendations, one expert consensus recommendation, and one conditional deferred recommendation. Conclusions: We developed these clinical guidelines for mechanical ventilation liberation to provide meaningful recommendations. These guidelines reflect the best treatment for patients seeking liberation from mechanical ventilation.
10.Liberation from mechanical ventilation in critically ill patients: Korean Society of Critical Care Medicine Clinical Practice Guidelines
Tae Sun HA ; Dong Kyu OH ; Hak-Jae LEE ; Youjin CHANG ; In Seok JEONG ; Yun Su SIM ; Suk-Kyung HONG ; Sunghoon PARK ; Gee Young SUH ; So Young PARK
Acute and Critical Care 2024;39(1):1-23
Successful liberation from mechanical ventilation is one of the most crucial processes in critical care because it is the first step by which a respiratory failure patient begins to transition out of the intensive care unit and return to their own life. Therefore, when devising appropriate strategies for removing mechanical ventilation, it is essential to consider not only the individual experiences of healthcare professionals, but also scientific and systematic approaches. Recently, numerous studies have investigated methods and tools for identifying when mechanically ventilated patients are ready to breathe on their own. The Korean Society of Critical Care Medicine therefore provides these recommendations to clinicians about liberation from the ventilator. Methods: Meta-analyses and comprehensive syntheses were used to thoroughly review, compile, and summarize the complete body of relevant evidence. All studies were meticulously assessed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) method, and the outcomes were presented succinctly as evidence profiles. Those evidence syntheses were discussed by a multidisciplinary committee of experts in mechanical ventilation, who then developed and approved recommendations. Results: Recommendations for nine PICO (population, intervention, comparator, and outcome) questions about ventilator liberation are presented in this document. This guideline includes seven conditional recommendations, one expert consensus recommendation, and one conditional deferred recommendation. Conclusions: We developed these clinical guidelines for mechanical ventilation liberation to provide meaningful recommendations. These guidelines reflect the best treatment for patients seeking liberation from mechanical ventilation.

Result Analysis
Print
Save
E-mail