1.Cellular senescence in renal ischemia-reperfusion injury.
Chinese Medical Journal 2025;138(15):1794-1806
Acute kidney injury (AKI) affects more than 20% of hospitalized patients and is a significant contributor to morbidity and mortality, primarily due to ischemia-reperfusion injury (IRI), which is one of the leading causes of AKI. IRI not only exacerbates the immediate impact of AKI but also facilitates its progression to chronic kidney disease (CKD) and, in cases of preexisting CKD, to end-stage renal disease (ESRD). One of the critical pathological processes associated with IRI-AKI is cellular senescence, characterized by an irreversible arrest in the cell cycle, morphological and chromatin organization changes, altered transcriptional and metabolic profiles, and the development of a hypersecretory phenotype known as the senescence-associated secretory phenotype (SASP). The SASP amplifies senescence signals in surrounding normal cells through senescence-related pathways, contributing to tissue damage, fibrosis, and chronic inflammation. This review provides an overview of the defining features of senescent cells and explores the fundamental mechanisms underlying senescent cell generation following IRI. We elucidate the pivotal roles of cellular senescence in the transition from IRI-AKI to chronic kidney injury. Furthermore, we discuss emerging therapies targeting cellular senescence, including senolytics and senomorphics, which have shown promising results in both preclinical and clinical settings. These therapies position cellular senescence as a crucial target for the treatment of IRI in the kidneys. Additionally, advancements in single-cell sequencing technology and artificial intelligence-assisted drug screening are expected to accelerate the discovery of novel senescent biomarkers and synotherapeutics, paving the way for optimized and personalized therapeutic interventions.
Humans
;
Cellular Senescence/physiology*
;
Reperfusion Injury/pathology*
;
Acute Kidney Injury/pathology*
;
Animals
;
Kidney/metabolism*
;
Senescence-Associated Secretory Phenotype/physiology*
2.Cellular senescence in kidney diseases.
Xiaojie WANG ; Yujia LI ; Qingqing CHU ; Hang LV ; Jing LI ; Fan YI
Chinese Medical Journal 2025;138(18):2234-2242
Cellular senescence, stable cell cycle arrest that can be triggered in normal cells in response to various intrinsic and extrinsic stressors, has been highlighted as one of the most important mechanisms involved in kidney diseases. It not only serves as a fundamental biological process promoting normal organogenesis and successful wound repair but also contributes to organ dysfunction, tissue fibrosis, and the generalized aging phenotype. Moreover, senescent cells exhibit reduced regenerative capacity, which impairs renal function recovery from injuries. Importantly, senescent cells are involved in immune regulation via secreting a diverse array of proinflammatory and profibrotic factors known as senescence-associated secretory phenotype (SASP) with autocrine, paracrine, and endocrine activities. Thus, eliminating detrimental senescent cells or inhibiting SASP production holds great promise for developing innovative therapeutic strategies for kidney diseases. In this review, we summarize the current knowledge of the intricate mechanisms and hallmarks of cellular senescence in kidney diseases and emphasize novel therapeutic targets, including epigenetic regulators, G protein-coupled receptors, and lysosome-related proteins. Particularly, we highlight the recently identified senotherapeutics, which provide new therapeutic strategies for treating kidney diseases.
Humans
;
Cellular Senescence/genetics*
;
Kidney Diseases/pathology*
;
Senescence-Associated Secretory Phenotype/physiology*
;
Animals
;
Epigenesis, Genetic/physiology*
3.Cellular senescence in age-related musculoskeletal diseases.
Jinming XIONG ; Qiaoyue GUO ; Xianghang LUO
Frontiers of Medicine 2025;19(3):409-426
Aging is typically associated with decreased musculoskeletal function, leading to reduced mobility and increased frailty. As a hallmark of aging, cellular senescence plays a crucial role in various age-related musculoskeletal diseases, including osteoporosis, osteoarthritis, intervertebral disc degeneration, and sarcopenia. The detrimental effects of senescence are primarily due to impaired regenerative capacity of stem cells and the pro-inflammatory environment created by accumulated senescent cells. The secreted senescence-associated secretory phenotype (SASP) can induce senescence in neighboring cells, further amplifying senescent signals. Although the removal of senescent cells and the suppression of SASP factors have shown promise in alleviating disease progression and restoring musculoskeletal health in mouse models, clinical trials have yet to demonstrate significant efficacy. This review summarizes the mechanisms of cellular senescence in age-related musculoskeletal diseases and discusses potential therapeutic strategies targeting cellular senescence.
Humans
;
Cellular Senescence/physiology*
;
Musculoskeletal Diseases/pathology*
;
Aging/pathology*
;
Animals
;
Senescence-Associated Secretory Phenotype/physiology*
;
Sarcopenia
;
Osteoporosis

Result Analysis
Print
Save
E-mail