1.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
2.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
3.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
4.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
5.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
6.Efficacy of alpha-lipoic acid in patients with ischemic heart failure: a randomized, double-blind, placebo-controlled study
Hanchuan CHEN ; Qin YU ; Yamei XU ; Chen LIU ; Jing SUN ; Jingjing ZHAO ; Wenjia LI ; Kai HU ; Junbo GE ; Aijun SUN
Chinese Journal of Clinical Medicine 2025;32(4):717-719
Objective To explore the safety and effects of alpha-lipoic acid (ALA) in patients with ischemic heart failure (IHF). Methods A randomized, double-blind, placebo-controlled trial was designed (ClinicalTrial.gov registration number NCT03491969). From January 2019 to January 2023, 300 patients with IHF were enrolled in four medical centers in China, and were randomly assigned at a 1∶1 ratio to receive ALA (600 mg daily) or placebo on top of standard care for 24 months. The primary outcome was the composite outcome of hospitalization for heart failure (HF) or all-cause mortality events. The second outcome included non-fatal myocardial infarction (MI), non-fatal stroke, changes of left ventricular ejection fraction (LVEF) and 6-minute walking distance (6MWD) from baseline to 24 months after randomization. Results Finally, 138 patients of the ALA group and 139 patients of the placebo group attained the primary outcome. Hospitalization for HF or all-cause mortality events occurred in 32 patients (23.2%) of the ALA group and in 40 patients (28.8%) of the placebo group (HR=0.753, 95%CI 0.473-1.198, P=0.231; Figure 1A-1C). The absolute risk reduction (ARR) was 5.6%, the relative risk reduction (RRR) associated with ALA therapy was approximately 19.4% compared to placebo, corresponding to a number needed to treat (NNT) of 18 patients to prevent one event. In the secondary outcome analysis, the composite outcome of the major adverse cardiovascular events (MACE) including the hospitalization for HF, all-cause mortality events, non-fatal MI or non-fatal stroke occurred in 35 patients (25.4%) in the ALA group and 47 patients (33.8%) in the placebo group (HR=0.685, 95%CI 0.442-1.062, P=0.091; Figure 1D). Moreover, greater improvement in LVEF (β=3.20, 95%CI 1.14-5.23, P=0.002) and 6MWD (β=31.7, 95%CI 8.3-54.7, P=0.008) from baseline to 24 months after randomization were observed in the ALA group as compared to the placebo group. There were no differences in adverse events between the study groups. Conclusions These results show potential long-term beneficial effects of adding ALA to IHF patients. ALA could significantly improve LVEF and 6MWD compared to the placebo group in IHF patients.
7.A multidimensional platform of patient-derived tumors identifies drug susceptibilities for clinical lenvatinib resistance.
Lei SUN ; Arabella H WAN ; Shijia YAN ; Ruonian LIU ; Jiarui LI ; Zhuolong ZHOU ; Ruirui WU ; Dongshi CHEN ; Xianzhang BU ; Jingxing OU ; Kai LI ; Xiongbin LU ; Guohui WAN ; Zunfu KE
Acta Pharmaceutica Sinica B 2024;14(1):223-240
Lenvatinib, a second-generation multi-receptor tyrosine kinase inhibitor approved by the FDA for first-line treatment of advanced liver cancer, facing limitations due to drug resistance. Here, we applied a multidimensional, high-throughput screening platform comprising patient-derived resistant liver tumor cells (PDCs), organoids (PDOs), and xenografts (PDXs) to identify drug susceptibilities for conquering lenvatinib resistance in clinically relevant settings. Expansion and passaging of PDCs and PDOs from resistant patient liver tumors retained functional fidelity to lenvatinib treatment, expediting drug repurposing screens. Pharmacological screening identified romidepsin, YM155, apitolisib, NVP-TAE684 and dasatinib as potential antitumor agents in lenvatinib-resistant PDC and PDO models. Notably, romidepsin treatment enhanced antitumor response in syngeneic mouse models by triggering immunogenic tumor cell death and blocking the EGFR signaling pathway. A combination of romidepsin and immunotherapy achieved robust and synergistic antitumor effects against lenvatinib resistance in humanized immunocompetent PDX models. Collectively, our findings suggest that patient-derived liver cancer models effectively recapitulate lenvatinib resistance observed in clinical settings and expedite drug discovery for advanced liver cancer, providing a feasible multidimensional platform for personalized medicine.
8.Resveratrol alleviates the immune response and proliferation of macrophages induced by homocysteine
Xue-Sen ZHANG ; Kai-Yue QIN ; Xiao-Han LI ; Yan-Jia WANG ; Xi XU ; Xiao-Ling YANG
The Chinese Journal of Clinical Pharmacology 2024;40(14):2038-2042
Objective To explore the role of resveratrol in the immune response and proliferation of macrophages induced by homocysteine(Hcy).Methods ANA-1 cells were divided into control group(conventional culture),model group(100 μmol·L-1 Hcy),experimental-L,-M,-H groups(adding 25,50 and 100 μmol·L-1 resveratrol to model group,respectively),Hcy+Ad-SIRT1 group(100 μmol·L-1 Hcy+Ad-SIRT1),Hcy+si-FOXO1 group(100 μmol·L-1 Hcy+si-FOXO1),Hcy+Res-L+Ad-SIRT1+si-FOXO1 group(100 μmol·L-1 Hcy+25 μmol·L-1 Resveratrol transfected with Ad-SIRT1+si-FOXO1).The cell proliferation was detected by methyl thiazolyl tetrazolium(MTT),and the concentration of interleukin-6(IL-6)and tumor necrosis factor-α(TNF-α)in the supernatant of cell culture medium was detected by enzyme-linked immunosorbent assay.The gene and protein expression of silencing information regulator 1(SIRT1)and forkhead protein 01(FOXO1)were detected by Western blot.Results The optical density of 450 nm in control group,model group and experimental-L,-M,-H groups were 0.25±0.02,0.36±0.02,0.33±0.01,0.30±0.02 and 0.29±0.01,respectively.Compared with the control group,the cell proliferation in the model group was significantly increased(P<0.05).Cell proliferation in experimental-L,-M,-H groups was significantly decreased compared with model group(all P<0.05).IL-6 in the supernatant of cell culture medium of control group,model group and experimental-L group were(394.04±20.06),(614.23±21.09)and(501.53±16.52)pg·mL-1,respectively;TNF-α were(516.54±18.96),(717.22±24.81)and(632.74±19.11)pg·mL-1,respectively;SIRT1 relative protein expression were(1.00±0.05),(0.57±0.05)and(0.77±0.04),respectively;the relative protein expression of FOXO1 were 1.00±0.05,2.31±0.18 and 1.58±0.11,respectively.Compared with the control group,the above indexes in the experimental-L group had statistical significance(all P<0.05).The contents of IL-6 and TNF-α in cell culture fluid supernatant in model group,experimental-L group,Hcy+Ad-SIRT1 group and Hcy+si-FOXO1 group were significantly lower than those in model group,with statistical significance(all P<0.05).After co-transfection with Ad-SIRT1 and si-FOXO1,the contents of IL-6 and TNF-α in cell culture medium superserum of experimental-L group were significantly lower than those of Ad-SIRT1 group and si-FOXO1 group(all P<0.05).Conclusion Resveratrol can attenuate the immune response and proliferation of macrophages induced by Hcy,which may be related to the alteration of SIRT1/FOXO1 pathway.
9.A prospective study on the association between lifestyles and mortality risk in adults in Henan Province
Lei FAN ; Minjie QI ; Tianfang XING ; Gang HOU ; Hanxue ZHANG ; Sen LIANG ; Li HAN ; Wenxie DING ; Kai KANG ; Zhiwei HAN
Chinese Journal of Epidemiology 2024;45(8):1052-1058
Objective:To analyze the association between healthy lifestyle and mortality among Henan Province 35-74 years old individuals.Methods:Data from the programme of screening and intervention subjects with high-risk cardiovascular disease 99 133 adults were analyzed in a provincial cohort study of 16 counties. Four healthy lifestyle behaviors were assessed based on a questionnaire survey. Information on mortality endpoints was retrieved from the national death surveillance system. Cox proportional hazards regression models were used to estimate the associations between healthy lifestyles, mortality risk and population attributable fraction (PAF).Results:Out of the adult participants in Henan, 50.6% adhered to a healthy lifestyle, and only 0.1% adhered to 4 healthy lifestyle behaviours. During a mean of 4.5 years, 2 685 all-cause death and 1 283 cardiovascular deaths were documented. The decreased risk of mortality among individuals with non-smoking, moderate drinking, adequate exercise and healthy diet were 0.85 (95% CI: 0.77-0.94), 0.75 (95% CI: 0.63-0.89), 0.73 (95% CI: 0.67-0.79) and 0.86 (95% CI: 0.77-0.96), while the adjusted PAF for all-cause deaths were 5.2% (95% CI: 2.5%-7.9%), 24.0% (95% CI: 10.7%-36.4%), 19.4% (95% CI: 13.8%-24.8%) and 12.3% (95% CI: 3.4%-20.9%), respectively. A combined healthy lifestyle can bring more health benefits. Adherence to 4 healthy lifestyle behaviours could avoid 49.1% of all-cause death. Conclusion:Adherence to a healthy lifestyle can reduce the risk of death, and participants with a healthy lifestyle had a lower mortality risk.
10.Application value of psTg combined with lymph node ratio in prognosis of papillary thyroid cancer patients treated with 131I
Zhaoyang JIA ; Deyu LI ; Sen WANG ; Guang YANG ; Kai CHEN ; Lijun WANG ; Wei FAN ; Hui YANG ; Wenliang LI
Chinese Journal of Nuclear Medicine and Molecular Imaging 2023;43(7):407-411
Objective:To explore the value of pre-ablation stimulated thyroglobulin (psTg) before 131I treatment combined with lymph node ratio (LNR) in predicting 131I treatment response in patients with papillary thyroid cancer (PTC). Methods:From January 2016 to December 2018, 178 PTC patients (47 males, 131 females; age (43.2±12.6) years) treated with 131I in the Affiliated Cancer Hospital of Zhengzhou University were retrospectively analyzed. According to 131I treatment response, patients were divided into excellent response (ER) group and non-ER group. The clinical data of the two groups were compared by χ2 test, independent-sample t test and Mann-Whitney U test. The cut-off values and AUCs of psTg and LNR to predict treatment response were calculated according to the ROC curve. Factors affecting 131I treatment response were analyzed by logistic multivariate regression analysis. Results:There were 118 patients (66.3%, 118/178) in ER group and 60 patients (33.7%, 60/178) in non-ER group, and there were significant differences in N stage ( χ2=11.15, P=0.004), 131I treatment dose ( χ2=12.65, P<0.001), American Thyroid Association (ATA) initial risk stratification ( χ2=15.25, P<0.001), number of metastatic lymph nodes ( χ2=22.63, P<0.001), LNR ( U=1 506.00, P<0.001) and psTg ( U=919.00, P<0.001) between the two groups. The cut-off values of psTg and LNR predicting ER were 3.97 μg/L and 0.29, with the AUC of 0.870 and 0.787 respectively. PsTg (odds ratio ( OR)=10.88, 95% CI: 4.67-25.36, P<0.001) and LNR ( OR=5.30, 95% CI: 1.85-15.23, P=0.002) were independent factors to predict 131I treatment response in PTC patients. When psTg≥3.97 μg/L, LNR ( OR=9.40, 95% CI: 2.06-42.92, P=0.004) was an independent factor affecting 131I treatment response in PTC patients. Conclusions:PsTg and LNR are independent factors affecting 131I treatment response in PTC patients. When psTg≥3.97 μg/L, LNR can be used as a supplementary factor to predict 131I treatment response. The combination of psTg and LNR can better predict 131I treatment response in PTC patients.

Result Analysis
Print
Save
E-mail