1.Safety of teriflunomide in Chinese adult patients with relapsing multiple sclerosis: A phase IV, 24-week multicenter study.
Chao QUAN ; Hongyu ZHOU ; Huan YANG ; Zheng JIAO ; Meini ZHANG ; Baorong ZHANG ; Guojun TAN ; Bitao BU ; Tao JIN ; Chunyang LI ; Qun XUE ; Huiqing DONG ; Fudong SHI ; Xinyue QIN ; Xinghu ZHANG ; Feng GAO ; Hua ZHANG ; Jiawei WANG ; Xueqiang HU ; Yueting CHEN ; Jue LIU ; Wei QIU
Chinese Medical Journal 2025;138(4):452-458
BACKGROUND:
Disease-modifying therapies have been approved for the treatment of relapsing multiple sclerosis (RMS). The present study aims to examine the safety of teriflunomide in Chinese patients with RMS.
METHODS:
This non-randomized, multi-center, 24-week, prospective study enrolled RMS patients with variant (c.421C>A) or wild type ABCG2 who received once-daily oral teriflunomide 14 mg. The primary endpoint was the relationship between ABCG2 polymorphisms and teriflunomide exposure over 24 weeks. Safety was assessed over the 24-week treatment with teriflunomide.
RESULTS:
Eighty-two patients were assigned to variant ( n = 42) and wild type groups ( n = 40), respectively. Geometric mean and geometric standard deviation (SD) of pre-dose concentration (variant, 54.9 [38.0] μg/mL; wild type, 49.1 [32.0] μg/mL) and area under plasma concentration-time curve over a dosing interval (AUC tau ) (variant, 1731.3 [769.0] μg∙h/mL; wild type, 1564.5 [1053.0] μg∙h/mL) values at steady state were approximately similar between the two groups. Safety profile was similar and well tolerated across variant and wild type groups in terms of rates of treatment emergent adverse events (TEAE), treatment-related TEAE, grade ≥3 TEAE, and serious adverse events (AEs). No new specific safety concerns or deaths were reported in the study.
CONCLUSION:
ABCG2 polymorphisms did not affect the steady-state exposure of teriflunomide, suggesting a similar efficacy and safety profile between variant and wild type RMS patients.
REGISTRATION
NCT04410965, https://clinicaltrials.gov .
Humans
;
Crotonates/adverse effects*
;
Toluidines/adverse effects*
;
Nitriles
;
Hydroxybutyrates
;
Female
;
Male
;
Adult
;
ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics*
;
Middle Aged
;
Multiple Sclerosis, Relapsing-Remitting/genetics*
;
Prospective Studies
;
Young Adult
;
Neoplasm Proteins/genetics*
;
East Asian People
2.Key technologies and challenges in online adaptive radiotherapy for lung cancer.
Baiqiang DONG ; Shuohan ZHENG ; Kelly CHEN ; Xuan ZHU ; Sijuan HUANG ; Xiaobo JIANG ; Wenchao DIAO ; Hua LI ; Lecheng JIA ; Feng CHI ; Xiaoyan HUANG ; Qiwen LI ; Ming CHEN
Chinese Medical Journal 2025;138(13):1559-1567
Definitive treatment of lung cancer with radiotherapy is challenging, as respiratory motion and anatomical changes can increase the risk of severe off-target effects during radiotherapy. Online adaptive radiotherapy (ART) is an evolving approach that enables timely modification of a treatment plan during the interfraction of radiotherapy, in response to physiologic or anatomic variations, aiming to improve the dose distribution for precise targeting and delivery in lung cancer patients. The effectiveness of online ART depends on the seamless integration of multiple components: sufficient quality of linear accelerator-integrated imaging guidance, deformable image registration, automatic recontouring, and efficient quality assurance and workflow. This review summarizes the present status of online ART for lung cancer, including key technologies, as well as the challenges and areas of active research in this field.
Humans
;
Lung Neoplasms/radiotherapy*
;
Radiotherapy Planning, Computer-Assisted/methods*
3.Conserved translational control in cardiac hypertrophy revealed by ribosome profiling.
Bao-Sen WANG ; Jian LYU ; Hong-Chao ZHAN ; Yu FANG ; Qiu-Xiao GUO ; Jun-Mei WANG ; Jia-Jie LI ; An-Qi XU ; Xiao MA ; Ning-Ning GUO ; Hong LI ; Zhi-Hua WANG
Acta Physiologica Sinica 2025;77(5):757-774
A primary hallmark of pathological cardiac hypertrophy is excess protein synthesis due to enhanced translational activity. However, regulatory mechanisms at the translational level under cardiac stress remain poorly understood. Here we examined the translational regulations in a mouse cardiac hypertrophy model induced by transaortic constriction (TAC) and explored the conservative networks versus the translatome pattern in human dilated cardiomyopathy (DCM). The results showed that the heart weight to body weight ratio was significantly elevated, and the ejection fraction and fractional shortening significantly decreased 8 weeks after TAC. Puromycin incorporation assay showed that TAC significantly increased protein synthesis rate in the left ventricle. RNA-seq revealed 1,632 differentially expressed genes showing functional enrichment in pathways including extracellular matrix remodeling, metabolic processes, and signaling cascades associated with pathological cardiomyocyte growth. When combined with ribosome profiling analysis, we revealed that translation efficiency (TE) of 1,495 genes was enhanced, while the TE of 933 genes was inhibited following TAC. In DCM patients, 1,354 genes were upregulated versus 1,213 genes were downregulated at the translation level. Although the majority of the genes were not shared between mouse and human, we identified 93 genes, including Nos3, Kcnj8, Adcy4, Itpr1, Fasn, Scd1, etc., with highly conserved translational regulations. These genes were remarkably associated with myocardial function, signal transduction, and energy metabolism, particularly related to cGMP-PKG signaling and fatty acid metabolism. Motif analysis revealed enriched regulatory elements in the 5' untranslated regions (5'UTRs) of transcripts with differential TE, which exhibited strong cross-species sequence conservation. Our study revealed novel regulatory mechanisms at the translational level in cardiac hypertrophy and identified conserved translation-sensitive targets with potential applications to treat cardiac hypertrophy and heart failure in the clinic.
Animals
;
Humans
;
Cardiomegaly/physiopathology*
;
Ribosomes/physiology*
;
Protein Biosynthesis/physiology*
;
Mice
;
Cardiomyopathy, Dilated/genetics*
;
Ribosome Profiling
4.Ameliorative effects of Lycii Fructus-Chrysanthemi Flos at different ratios on retinal damage in mice.
Bing LI ; Sheng GUO ; Yue ZHU ; Xue-Sen WANG ; Dan-Dan WEI ; Hong-Jie KANG ; Wen-Hua ZHANG ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2025;50(3):732-740
This study aimed to compare the ameliorative effects of Lycii Fructus and Chrysanthemi Flos at different ratios on retinal damage in mice and to elucidate the underlying mechanisms. A retinal injury model was established by intraperitoneal injection of sodium iodate(NaIO_3) solution. The mice were divided into the following groups: blank group, model group, positive drug(AREDS 2) group, low-and high-dose groups of Lycii Fructus and Chrysanthemi Flos at 1∶1, low-and high-dose groups at 3∶1, and low-and high-dose groups at 1∶3. Administration was carried out 15 days after modeling. The visual acuity of the mice was assessed using the black-and-white box test. The fundus was observed using an optical coherence tomography device, and retinal thickness was measured. HE staining was used to observe the morphology and pathological changes of the retina. The levels of oxidative factors in serum and ocular tissues were measured using assay kits. The levels of inflammatory factors in serum and ocular tissues were detected by enzyme-linked immunosorbent assay(ELISA), and the expression of Nrf2, HO-1, and NF-κB proteins in ocular tissues was analyzed by Western blot. The results showed that after administration of Lycii Fructus and Chrysanthemi Flos at different ratios, the model group showed improved retinal thinning and disordered arrangement of retinal layers, elevated content of SOD and GSH in the serum and ocular tissues, and reduced levels of MDA, TNF-α, IL-1β, and IL-6. Lycii Fructus and Chrysanthemi Flos at 1∶1 and 1∶3 showed better improvement effects. The combination significantly upregulated the expression levels of Nrf2 and HO-1 and downregulated the expression of NF-κB p65. These results indicate that Lycii Fructus and Chrysanthemi Flos at different ratios can improve retinal damage, reduce oxidative stress, and alleviate inflammation in both the body and ocular tissues of mice. The mechanism may be related to the regulation of the Nrf2/HO-1 and NF-κB signaling pathways in ocular tissues. These findings provide a theoretical basis for the clinical application of Lycii Fructus and Chrysanthemi Flos in the treatment of dry age-related macular degeneration.
Animals
;
Mice
;
Retina/injuries*
;
Male
;
Lycium/chemistry*
;
Drugs, Chinese Herbal/administration & dosage*
;
Chrysanthemum/chemistry*
;
NF-kappa B/genetics*
;
Humans
;
Retinal Diseases/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress/drug effects*
;
Flowers/chemistry*
;
Heme Oxygenase-1/genetics*
5.Prediction of testicular histology in azoospermia patients through deep learning-enabled two-dimensional grayscale ultrasound.
Jia-Ying HU ; Zhen-Zhe LIN ; Li DING ; Zhi-Xing ZHANG ; Wan-Ling HUANG ; Sha-Sha HUANG ; Bin LI ; Xiao-Yan XIE ; Ming-De LU ; Chun-Hua DENG ; Hao-Tian LIN ; Yong GAO ; Zhu WANG
Asian Journal of Andrology 2025;27(2):254-260
Testicular histology based on testicular biopsy is an important factor for determining appropriate testicular sperm extraction surgery and predicting sperm retrieval outcomes in patients with azoospermia. Therefore, we developed a deep learning (DL) model to establish the associations between testicular grayscale ultrasound images and testicular histology. We retrospectively included two-dimensional testicular grayscale ultrasound from patients with azoospermia (353 men with 4357 images between July 2017 and December 2021 in The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China) to develop a DL model. We obtained testicular histology during conventional testicular sperm extraction. Our DL model was trained based on ultrasound images or fusion data (ultrasound images fused with the corresponding testicular volume) to distinguish spermatozoa presence in pathology (SPP) and spermatozoa absence in pathology (SAP) and to classify maturation arrest (MA) and Sertoli cell-only syndrome (SCOS) in patients with SAP. Areas under the receiver operating characteristic curve (AUCs), accuracy, sensitivity, and specificity were used to analyze model performance. DL based on images achieved an AUC of 0.922 (95% confidence interval [CI]: 0.908-0.935), a sensitivity of 80.9%, a specificity of 84.6%, and an accuracy of 83.5% in predicting SPP (including normal spermatogenesis and hypospermatogenesis) and SAP (including MA and SCOS). In the identification of SCOS and MA, DL on fusion data yielded better diagnostic performance with an AUC of 0.979 (95% CI: 0.969-0.989), a sensitivity of 89.7%, a specificity of 97.1%, and an accuracy of 92.1%. Our study provides a noninvasive method to predict testicular histology for patients with azoospermia, which would avoid unnecessary testicular biopsy.
Humans
;
Male
;
Azoospermia/diagnostic imaging*
;
Deep Learning
;
Testis/pathology*
;
Retrospective Studies
;
Adult
;
Ultrasonography/methods*
;
Sperm Retrieval
;
Sertoli Cell-Only Syndrome/diagnostic imaging*
6.The addition of 5-aminolevulinic acid to HBSS protects testis grafts during hypothermic transportation: a novel preservation strategy.
Meng-Hui MA ; Pei-Gen CHEN ; Jun-Xian HE ; Hai-Cheng CHEN ; Zhen-Han XU ; Lin-Yan LV ; Yan-Qing LI ; Xiao-Yan LIANG ; Gui-Hua LIU
Asian Journal of Andrology 2025;27(4):454-463
The aim of this investigation was to determine the optimal storage medium for testicular hypothermic transportation and identify the ideal concentration for the application of the protective agent 5-aminolevulinic acid (5-ALA). Furthermore, this study aimed to explore the underlying mechanism of the protective effects of 5-ALA. First, we collected and stored mouse testicular fragments in different media, including Hank's balanced salt solution (HBSS; n = 5), Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F12; n = 5), and alpha-minimum essential medium (αMEM; n = 5). Storage of testicular tissue in HBSS preserved the integrity of testicular morphology better than that in the DMEM/F12 group ( P < 0.05) and the αMEM group ( P < 0.01). Testicular fragments were subsequently placed in HBSS with various concentrations of 5-ALA (0 [control], 1 mmol l -1 , 2 mmol l -1 , and 5 mmol l -1 ) to determine the most effective concentration of 5-ALA. The 2 mmol l -1 5-ALA group ( n = 3) presented the highest positive rate of spermatogonial stem cells compared with those in the control, 1 mmol l -1 , and 5 mmol l -1 5-ALA groups. Finally, the tissue fragments were preserved in HBSS with control ( n = 3) and 2 mmol l -1 5-ALA ( n = 3) under low-temperature conditions. A comparative analysis was performed against fresh testes ( n = 3) to elucidate the underlying mechanism of 5-ALA. Gene set enrichment analysis (GSEA) for WikiPathways revealed that the p38 mitogen-activated protein kinase (MAPK) signaling pathway was downregulated in the 2 mmol l -1 5-ALA group compared with that in the control group (normalized enrichment score [NES] = -1.57, false discovery rate [FDR] = 0.229, and P = 0.019). In conclusion, these data suggest that using 2 mmol l -1 5-ALA in HBSS effectively protected the viability of spermatogonial stem cells upon hypothermic transportation.
Male
;
Animals
;
Testis/cytology*
;
Aminolevulinic Acid/pharmacology*
;
Mice
;
Organ Preservation/methods*
;
Organ Preservation Solutions/pharmacology*
;
Cryopreservation/methods*
7.Qingda Granule Attenuates Hypertension-Induced Cardiac Damage via Regulating Renin-Angiotensin System Pathway.
Lin-Zi LONG ; Ling TAN ; Feng-Qin XU ; Wen-Wen YANG ; Hong-Zheng LI ; Jian-Gang LIU ; Ke WANG ; Zhi-Ru ZHAO ; Yue-Qi WANG ; Chao-Ju WANG ; Yi-Chao WEN ; Ming-Yan HUANG ; Hua QU ; Chang-Geng FU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(5):402-411
OBJECTIVE:
To assess the efficacy of Qingda Granule (QDG) in ameliorating hypertension-induced cardiac damage and investigate the underlying mechanisms involved.
METHODS:
Twenty spontaneously hypertensive rats (SHRs) were used to develope a hypertension-induced cardiac damage model. Another 10 Wistar Kyoto (WKY) rats were used as normotension group. Rats were administrated intragastrically QDG [0.9 g/(kg•d)] or an equivalent volume of pure water for 8 weeks. Blood pressure, histopathological changes, cardiac function, levels of oxidative stress and inflammatory response markers were measured. Furthermore, to gain insights into the potential mechanisms underlying the protective effects of QDG against hypertension-induced cardiac injury, a network pharmacology study was conducted. Predicted results were validated by Western blot, radioimmunoassay immunohistochemistry and quantitative polymerase chain reaction, respectively.
RESULTS:
The administration of QDG resulted in a significant decrease in blood pressure levels in SHRs (P<0.01). Histological examinations, including hematoxylin-eosin staining and Masson trichrome staining revealed that QDG effectively attenuated hypertension-induced cardiac damage. Furthermore, echocardiography demonstrated that QDG improved hypertension-associated cardiac dysfunction. Enzyme-linked immunosorbent assay and colorimetric method indicated that QDG significantly reduced oxidative stress and inflammatory response levels in both myocardial tissue and serum (P<0.01).
CONCLUSIONS
Both network pharmacology and experimental investigations confirmed that QDG exerted its beneficial effects in decreasing hypertension-induced cardiac damage by regulating the angiotensin converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor type 1 axis and ACE/Ang II/Ang II receptor type 2 axis.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Hypertension/pathology*
;
Renin-Angiotensin System/drug effects*
;
Rats, Inbred SHR
;
Oxidative Stress/drug effects*
;
Male
;
Rats, Inbred WKY
;
Blood Pressure/drug effects*
;
Myocardium/pathology*
;
Rats
;
Inflammation/pathology*
8.The diagnosis and treatment progress of olfaction disorders in chronic rhinosinusitis.
Linlu WANG ; Hangtian ZHANG ; Yihui WEN ; Jian LI ; Weiping WEN ; Hua ZHONG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(4):386-392
Olfactory disorders are a common symptom in patients with chronic rhinosinusitis, and their diagnosis and treatment have garnered extensive attention from both patients and doctors. Currently, there are various evaluation and treatment methods for olfactory dysfunction; however, choosing a simpler and more accurate assessment, as well as an effective treatment, remains a clinical challenge. In this article, we review the assessment and treatment methods commonly used in clinical practice in recent years to provide better support for the diagnosis and treatment of olfactory disorders.
Humans
;
Olfaction Disorders/etiology*
;
Sinusitis/complications*
;
Chronic Disease
;
Rhinitis/complications*
;
Rhinosinusitis
9.Lentivirus-modified hematopoietic stem cell gene therapy for advanced symptomatic juvenile metachromatic leukodystrophy: a long-term follow-up pilot study.
Zhao ZHANG ; Hua JIANG ; Li HUANG ; Sixi LIU ; Xiaoya ZHOU ; Yun CAI ; Ming LI ; Fei GAO ; Xiaoting LIANG ; Kam-Sze TSANG ; Guangfu CHEN ; Chui-Yan MA ; Yuet-Hung CHAI ; Hongsheng LIU ; Chen YANG ; Mo YANG ; Xiaoling ZHANG ; Shuo HAN ; Xin DU ; Ling CHEN ; Wuh-Liang HWU ; Jiacai ZHUO ; Qizhou LIAN
Protein & Cell 2025;16(1):16-27
Metachromatic leukodystrophy (MLD) is an inherited disease caused by a deficiency of the enzyme arylsulfatase A (ARSA). Lentivirus-modified autologous hematopoietic stem cell gene therapy (HSCGT) has recently been approved for clinical use in pre and early symptomatic children with MLD to increase ARSA activity. Unfortunately, this advanced therapy is not available for most patients with MLD who have progressed to more advanced symptomatic stages at diagnosis. Patients with late-onset juvenile MLD typically present with a slower neurological progression of symptoms and represent a significant burden to the economy and healthcare system, whereas those with early onset infantile MLD die within a few years of symptom onset. We conducted a pilot study to determine the safety and benefit of HSCGT in patients with postsymptomatic juvenile MLD and report preliminary results. The safety profile of HSCGT was favorable in this long-term follow-up over 9 years. The most common adverse events (AEs) within 2 months of HSCGT were related to busulfan conditioning, and all AEs resolved. No HSCGT-related AEs and no evidence of distorted hematopoietic differentiation during long-term follow-up for up to 9.6 years. Importantly, to date, patients have maintained remarkably improved ARSA activity with a stable disease state, including increased Functional Independence Measure (FIM) score and decreased magnetic resonance imaging (MRI) lesion score. This long-term follow-up pilot study suggests that HSCGT is safe and provides clinical benefit to patients with postsymptomatic juvenile MLD.
Humans
;
Leukodystrophy, Metachromatic/genetics*
;
Pilot Projects
;
Genetic Therapy/methods*
;
Hematopoietic Stem Cell Transplantation
;
Male
;
Follow-Up Studies
;
Female
;
Lentivirus/genetics*
;
Child
;
Child, Preschool
;
Hematopoietic Stem Cells/metabolism*
;
Cerebroside-Sulfatase/metabolism*
;
Adolescent
10.Myeloid cells: key players in tumor microenvironments.
Qiaomin HUA ; Zhixiong LI ; Yulan WENG ; Yan WU ; Limin ZHENG
Frontiers of Medicine 2025;19(2):265-296
Cancer is the result of evolving crosstalk between neoplastic cell and its immune microenvironment. In recent years, immune therapeutics targeting T lymphocytes, such as immune checkpoint blockade (ICB) and CAR-T, have made significant progress in cancer treatment and validated targeting immune cells as a promising approach to fight human cancers. However, responsiveness to the current immune therapeutic agents is limited to only a small proportion of solid cancer patients. As major components of most solid tumors, myeloid cells played critical roles in regulating the initiation and sustentation of adaptive immunity, thus determining tumor progression as well as therapeutic responses. In this review, we discuss emerging data on the diverse functions of myeloid cells in tumor progression through their direct effects or interactions with other immune cells. We explain how different metabolic reprogramming impacts the characteristics and functions of tumor myeloid cells, and discuss recent progress in revealing different mechanisms-chemotaxis, proliferation, survival, and alternative sources-involved in the infiltration and accumulation of myeloid cells within tumors. Further understanding of the function and regulation of myeloid cells is important for the development of novel strategies for therapeutic exploitation in cancer.
Humans
;
Tumor Microenvironment/immunology*
;
Myeloid Cells/immunology*
;
Neoplasms/therapy*
;
Animals

Result Analysis
Print
Save
E-mail