1.Biosynthesis of spherical selenium nanoparticles with halophilic Bacillus subtilis subspecies stercoris strain XP for inhibition of strawberry pathogens.
Yanyun ZHU ; Xiangping KONG ; Ejiao WU ; Ning ZHU ; Dong LIANG ; Menghan LOU ; Zhumeng ZHOU ; Hongmei JIN
Chinese Journal of Biotechnology 2021;37(8):2825-2835
Biosynthesis of nanomaterials has attracted much attention for its excellent characteristics such as low energy consumption, high safety, and environmental friendliness. As we all know, the toxic selenite can be transformed into higher-value nanomaterials by using bacteria. In this study, nano-selenium was synthesized by halophilic Bacillus subtilis subspecies stercoris strain XP in LB medium supplemented with selenite (electron acceptor). The physicochemical characteristics of nano-selenium were analyzed by scanning electron microscope (SEM), X-ray energy dispersive spectral analysis (EDAX), X-ray diffraction (XRD), and fourier transform infrared spectroscopy (FTIR). Meanwhile, the antifungal activity of nano-selenium to strawberry pathogens (fusarium wilt, erythema, and purple spot fungi) was determined. The products from reduction of selenite by strain XP was amorphous spherical selenium nanoparticles (SeNPs) with a diameter range of 135-165 nm. The production of SeNPs was positively correlated with time (0-48 h) and no changes were observed on cell morphology. Selenium was dominant in the surface of SeNPs where the organic elements (C, O, N, and S) existed at the same time. SeNPs were coated with biomolecules containing functional groups (such as -OH, C=O, N-H, and C-H) which were associated with the stability and bioactivity of particles. Although the highest concentration of SeNPs had significant (P<0.05) inhibitory effects on three strains of strawberry pathogens, antifungal activity to erythema and fusarium wilt pathogenic fungi was higher than that to purple spot pathogenic fungi from strawberry. In conclusion, strain XP not only has strong tolerance to high salt stress, but can be also used to synthesize biological SeNPs with good stability and biological activity. Thus, the strain XP has bright perspectives and great potential advantage in pathogens control and green selenium-rich strawberry planting as well as other fields.
Bacillus subtilis
;
Fragaria
;
Nanoparticles
;
Selenious Acid
;
Selenium
2.Characteristics of selenium nanoparticles synthesized by cell-free supernatant Cupriavidus sp. SHE.
Ying YANG ; Shuzhen LI ; Shuling FAN ; Jing YANG ; Zheng LI ; Henglin ZHANG ; Yuanyuan QU
Chinese Journal of Biotechnology 2020;36(6):1162-1169
In recent years, selenium nanoparticles (SeNPs) have been widely used in many fields such as nanotechnology, biomedicine and environmental remediation due to their good electrical conductivity, photothermal properties and anticancer properties. In this study, the cell-free supernatant, whole cell and the cell-free extracts of the strain Cupriavidus sp. SHE were used to synthesize SeNPs, and several methods were applied to analyze the crystal structure and surface functional groups of the nanoparticles. Finally, Pseudomonas sp. PI1 (G⁺) and Escherichia coli BL21 (G⁻) were selected to investigate the antibacterial properties of SeNPs. Cell-free supernatant, whole cell and cell-free extracts of the strain could synthesize SeNPs. As for the cell-free supernatant, selenite concentration of 5 mmol/L and pH=7 were favorable for the synthesis of SeNPs. TEM images show that the average size of nanospheres synthesized by the supernatant was 196 nm. XRD analysis indicates the hexagonal crystals structure of SeNPs. FTIR and SDS-PAGE confirmed the proteins bound to the surfaces of SeNPs. SeNPs synthesized by cell-free supernatant showed no antimicrobial activities against Pseudomonas sp. PI1 and Escherichia coli BL21 (DE3). These results suggest that proteins played an important role in biotransformation of SeNPs in an eco-friendly process, and SeNPs synthesized in this study were non-toxic and biologically compatible, which might be applied in other fields in the future.
Anti-Bacterial Agents
;
pharmacology
;
Bacteria
;
drug effects
;
Cupriavidus
;
metabolism
;
Nanoparticles
;
Selenious Acid
;
analysis
;
Selenium
;
chemistry
;
pharmacology
4.Synthesis and bioactivity of the folate receptor targeted gamma-cyclodextrin-folate inclusion-coated CdSe/ZnS quantum dots.
Mei-Xia ZHAO ; Yang LI ; Chao-Jie WANG
Acta Pharmaceutica Sinica 2013;48(4):566-572
The gamma-cyclodextrin-folate (gamma-CD/FA) inclusion-coated CdSe/ZnS quantum dots (QDs) with folate-receptor (FR) targeted were synthesized by simple and convenient sonochemical method. The products were studied using Fourier transform infrared (FTIR), proton nuclear magnetic resonance (1H NMR), utraviolet-visible spectrometry (UV-vis), fluorescence spectrum and transmission electron micrographs (TEM). The results showed that the gamma-CD/FA-coated CdSe/ZnS QDs not only have good monodispersity and smaller size, but also have good optical performance, such as higher quantum yield (QY) and a long fluorescence lifetime. The cytotoxicity experiments showed that the gamma-CD/FA-coated CdSe/ZnS QDs have lower cytotoxicity and could more effectively enter cancer cells with FR over-expression. The QDs with 4-5 nm in diameter were relatively easy to enter the cell and to be removed through kidneys, so it is more suitable for biomedical applications for bioprobes and bioimaging.
Cadmium Compounds
;
chemical synthesis
;
chemistry
;
metabolism
;
toxicity
;
Cell Survival
;
drug effects
;
Folate Receptor 1
;
chemistry
;
Folic Acid
;
chemistry
;
HeLa Cells
;
Hep G2 Cells
;
Humans
;
Magnetic Resonance Spectroscopy
;
Microscopy, Electron, Transmission
;
Molecular Imaging
;
methods
;
Quantum Dots
;
chemistry
;
metabolism
;
toxicity
;
Selenium Compounds
;
chemical synthesis
;
chemistry
;
metabolism
;
toxicity
;
Spectrophotometry, Ultraviolet
;
Spectroscopy, Fourier Transform Infrared
;
Sulfides
;
chemical synthesis
;
chemistry
;
metabolism
;
toxicity
;
Zinc Compounds
;
chemical synthesis
;
chemistry
;
metabolism
;
toxicity
;
gamma-Cyclodextrins
;
chemistry
6.The effects of selenium on tumor growth in epithelial ovarian carcinoma.
Jin Sun PARK ; Ji Yoon RYU ; Hye Kyung JEON ; Young Jae CHO ; Young Ae PARK ; Jung Joo CHOI ; Jeong Won LEE ; Byoung Gie KIM ; Duk Soo BAE
Journal of Gynecologic Oncology 2012;23(3):190-196
OBJECTIVE: Epidemiological studies suggest that selenium protects against the development of several cancers. Selenium (sodium selenite) has been reported to interfere with cell growth and proliferation, and to induce cell death. In this study, we tested whether selenium could have growth-inhibiting effect in ovarian cancer cells and an orthotopic animal model. METHODS: Cell growth in selenium-treated cells was determined in human ovarian cancer cells, A2780, HeyA8, and SKOV3ip1 using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay. Animal experiment of selenium with paclitaxel was performed using SKOV3ip1 cells in nude mice to evaluate their inhibiting effect for tumor growth. In addition, another animal experiment of paclitaxel with or without selenium was performed to assess the effect of survival and food intake in mice. RESULTS: The in vitro growth of selenium-treated cells was significantly decreased dose-dependently in A2780, HeyA8, and SKOV3ip1 cells. Therapy experiment in mice was started 1 week after injection of the SKOV3ip1 cells. Treatment with selenium (1.5 mg/kg, 3 times/week) and paclitaxel injection showed no addictive effect of the inhibition of tumor growth. However, combination of selenium and paclitaxel showed the slightly increased food intake compared with paclitaxel alone. CONCLUSION: Although selenium has growth-inhibiting effect in ovarian carcinoma cells in vitro, there is no additive effect on tumor growth in mice treated with combination of paclitaxel and selenium. However, food intake is slightly higher in selenium-treated mice during chemotherapy.
Animal Experimentation
;
Animals
;
Cell Death
;
Cell Survival
;
Eating
;
Humans
;
Mice
;
Mice, Nude
;
Ovarian Neoplasms
;
Paclitaxel
;
Selenium
;
Sodium Selenite
7.Determination of hydrogen selenide in workplace air with atomic fluorescence.
Wen-hua QIN ; Yan-yan LU ; Qi GENG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2012;30(2):144-145
OBJECTIVETo determined hydrogen selenide in workplace air with atomic fluorescence.
METHODHydrogen selenide were sampled with 0.1 mol/L sodium hydroxide solution in multi-hole absorbing tubes. The sampled absorbing solution were digested with (9+1) nitric acid/perchloric acid. The selenide in sample were reduced by potassium borohydride in 5.0% hydrochloride solution and determined with atomic fluorescence.
RESULTSThere was a good linearity (r=0.9999) over the concentration of 0-150 microg/L, The precision of low, middle and high concentration were 3.1%, 7.4% and 6.7%, respectively. The sample collection rate can reach 99%.
CONCLUSIONThe method was accurate and sensitive to detect hydrogen selenide in workplace air.
Air Pollutants, Occupational ; analysis ; Selenium Compounds ; analysis ; Spectrometry, Fluorescence ; Spectrophotometry, Atomic ; Workplace
8.Inhibitory effects of grape seed proanthocyanidin extract on selenite-induced cataract formation and possible mechanism.
Journal of Huazhong University of Science and Technology (Medical Sciences) 2012;32(4):613-619
This study investigated the inhibitory effect of grape seed proanthocyanidin extract (GSPE) on selenite-induced cataract formation in rats and the possible mechanism. Eighty 8-day-old Sprague-Dawley rats were divided randomly into 5 groups: control group, model group, three GSPE groups (low dose, medium dose and high dose). Control group received subcutaneous injection of physiological saline. Model group was given subcutaneous injection of sodium selenite (20 μmol/kg body weight) on the postpartum day 10, and once every other day for consecutive three times thereafter. GSPE treated groups were respectively administered GSPE at doses of 50, 100, and 200 mg/kg body weight intragastrically 2 days prior to the selenite injection (that was, on the postpartum day 8), and once daily for fourteen consecutive days thereafter. The opacity of lenses was observed, graded and photographed under the slit lamp microscopy and the maximal diameter of the nuclear cataract plaques was measured. The lenses were analyzed for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), malondialdehyde (MDA), calcium (Ca(2+)), nitric oxide (NO) and anti-hydroxyl radical ability (anti-OH(-)). The histomorphology of lenses was observed with HE staining under a light microscope. The levels of calpainII, and iNOS protein and mRNA expression in lenses were detected by using immunohistochemistry and real-time quantitative RT-PCR. The results showed subcutaneous injection of sodium selenite led to severe nuclear cataract in model group, and the achievement ratio of model group was 100%. As compared with model group, the degree of lenses opacity and the maximal diameter of nuclear cataract plaques were significantly reduced in GSPE-treated groups. Moreover, we observed selenite treatment caused a significant decrease in the activities of antioxidative enzymes (SOD, CAT, GSH-PX) and anti-OH(-) ability, accompanied by a significant increase in the levels of MDA, NO, Ca(2+) as well as iNOS, and calpainII protein and mRNA expression. Administration of GSPE could dose-dependently preserve the activities of these antioxidative enzymes and anti-OH(-) ability, accompanied by a significant reduction in the levels of MDA, NO, Ca(2+) as well as iNOS, and calpainII protein and mRNA expression. These results suggested that GSPE markedly prevented selenite-induced cataract formation probably by suppressing the generation of lipid peroxidation and free radicals as well as the activation of iNOS, and calpainII in the lenses.
Animals
;
Cataract
;
chemically induced
;
drug therapy
;
Grape Seed Extract
;
pharmacology
;
Plant Extracts
;
pharmacology
;
Proanthocyanidins
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Selenious Acid
;
adverse effects
9.Differentiation of human labia minora dermis-derived fibroblasts into insulin-producing cells.
Bona KIM ; Byung Sun YOON ; Jai Hee MOON ; Jonggun KIM ; Eun Kyoung JUN ; Jung Han LEE ; Jun Sung KIM ; Cheong Soon BAIK ; Aeree KIM ; Kwang Youn WHANG ; Seungkwon YOU
Experimental & Molecular Medicine 2012;44(1):26-35
Recent evidence has suggested that human skin fibroblasts may represent a novel source of therapeutic stem cells. In this study, we report a 3-stage method to induce the differentiation of skin fibroblasts into insulin-producing cells (IPCs). In stage 1, we establish the isolation, expansion and characterization of mesenchymal stem cells from human labia minora dermis-derived fibroblasts (hLMDFs) (stage 1: MSC expansion). hLMDFs express the typical mesenchymal stem cell marker proteins and can differentiate into adipocytes, osteoblasts, chondrocytes or muscle cells. In stage 2, DMEM/F12 serum-free medium with ITS mix (insulin, transferrin, and selenite) is used to induce differentiation of hLMDFs into endoderm-like cells, as determined by the expression of the endoderm markers Sox17, Foxa2, and PDX1 (stage 2: mesenchymal-endoderm transition). In stage 3, cells in the mesenchymal-endoderm transition stage are treated with nicotinamide in order to further differentiate into self-assembled, 3-dimensional islet cell-like clusters that express multiple genes related to pancreatic beta-cell development and function (stage 3: IPC). We also found that the transplantation of IPCs can normalize blood glucose levels and rescue glucose homeostasis in streptozotocin-induced diabetic mice. These results indicate that hLMDFs have the capacity to differentiate into functionally competent IPCs and represent a potential cell-based treatment for diabetes mellitus.
Animals
;
Biological Markers/metabolism
;
*Cell Culture Techniques
;
*Cell Differentiation
;
Cell Proliferation/drug effects
;
Cell Separation
;
Cells, Cultured
;
Dermis/*cytology/drug effects
;
Diabetes Mellitus, Experimental/*surgery
;
Female
;
Fibroblasts/*cytology/drug effects
;
Genitalia, Female/*cytology
;
Glucose/metabolism
;
Hepatocyte Nuclear Factor 3-beta/metabolism
;
Homeodomain Proteins/metabolism
;
Humans
;
Insulin/pharmacology/secretion
;
Insulin-Secreting Cells/*cytology/metabolism
;
*Islets of Langerhans Transplantation
;
Mesenchymal Stem Cells/*cytology/drug effects/metabolism
;
Mice
;
Mice, Nude
;
Niacinamide/pharmacology
;
Recovery of Function
;
SOXF Transcription Factors/metabolism
;
Sodium Selenite/pharmacology
;
Trans-Activators/metabolism
;
Transferrin/pharmacology
10.The curative effects of different drugs on liver cell damage of rats induced by acute nickel carbonyl poisoning.
Jing LIU ; Qiu-ying WANG ; Bei WANG ; Xiao-qiang XUAN ; Qiong CHEN ; Dong-wei XU ; Ning CHENG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2011;29(2):98-102
OBJECTIVETo assess the curative effects of different drugs on liver cell damage of rats induced by acute nickel carbonyl poisoning.
METHODSIn present study 220 SD rats were divided into control group (10 rats), carbonyl nickel group (10 rats), 20 mg/kg methylprednisolone group (40 rats), 100 mg/kg DDC group (40 rats), 10 µmol/kg sodium selenite group (40 rats), 0.25 ml shenfuhuiyangtang group (40 rats) and 20 mg/kg methylprednisolone with 100 mg/kg DDC group (40 rats). All rats except for control group inhaled passively 250 mg/m(3) carbonyl nickel for 30 minutes. At 4h and 30h after exposure, the drugs were given intraperitoneally to the rats. On the 3rd and 7th days after exposure, the liver samples were taken from 10 rats each group. The DNA damage of liver cells was detected using comet assay, the ultrastructure changes in liver cells were examined under an electronmicroscope.
RESULTSCompared to carbonyl nickel group, the tail lengths of liver cells in 5 groups administrated at 4 h or 30 h and tested on the 3rd or 7th day after exposure decreased significantly (P < 0.05). Compared to the control group, the tail lengths of liver cells in sodium selenite and shenfuhuiyangtang groups administrated at 4h after exposure or sodium selenite, shenfuhuiyangtang and methylprednisolone with DDC groups administrated at 30h after exposure increased significantly (P < 0.05 or P < 0.01), when tested on the 3rd day after exposure. Except from methylprednisolone sub-group administrated at 4h and tested on the 7th day after exposure, the tail lengths of liver cells in other groups administrated at 4 h or 30 h and tested on the 7th day after exposure increased significantly (P < 0.05). Compared to carbonyl nickel group, the Olive moment of liver cells in 5 groups administrated at 4 h or 30 h tested on the 3rd or 7th day after exposure decreased significantly (P < 0.05 or P < 0.01). Compared to the control group, the Olive moment of liver cells in following groups (selenite and shenfuhuiyangtang groups administrated at 4 h or 30 h and tested on the 3rd or 7th day after exposure, DDC group administrated at 4 h or 30 h and tested on the 7th day after exposure, DDC group administrated at 30h and tested on the 3rd day after exposure, and methylprednisolone with DDC group administrated at 30 h and tested on the 7th day after exposure) increased significantly (P < 0.05 or P < 0.01). As compared with carbonyl nickel group, the ultrastructure observation indicated that the nucleus and other organelles of liver cells in methylprednisolone, DDC and methylprednisolone with DDC groups administrated at 4h and tested on the 3rd day were access to normal levels.
CONCLUSIONThe results of present study showed that methylprednisolone, DDC and methylprednisolone with DDC could improve obviously the repair of rat liver cell damage induced by acute carbonyl nickel poisoning, and the curative effects of early treatment were better than those of later treatment.
Animals ; Chemical and Drug Induced Liver Injury ; drug therapy ; pathology ; DNA Damage ; Drugs, Chinese Herbal ; therapeutic use ; Hepatocytes ; pathology ; Male ; Methylprednisolone ; therapeutic use ; Organometallic Compounds ; poisoning ; Rats ; Rats, Sprague-Dawley ; Sodium Selenite ; therapeutic use ; Zalcitabine ; therapeutic use

Result Analysis
Print
Save
E-mail