1.Species identification of Ligustrum lucidum.
Yu-Shuang WANG ; Yuan-Xi JIN ; Kang-Jia LIU ; Chang GUO ; Yi-Heng WANG ; Chao XU ; Zhi-Xiang ZHANG ; Wen-Pan DONG
China Journal of Chinese Materia Medica 2023;48(11):2940-2948
Ligustrum lucidum is a woody perennial plant of genus Ligustrum in family Oleaceae. Its dried fruit has high medicinal value. In this study, the authors evaluated the variability and species identification efficiency of three specific DAN barcodes(rbcL-accD, ycf1a, ycf1b) and four general DAN barcodes(matK, rbcL, trnH-psbA, ITS2) for a rapid and accurate molecular identification of Ligustrum species. The results revealed that matK, rbcL, trnH-psbA, ITS2 and ycf1a were inefficient for identifying the Ligustrum species, and a large number of insertions and deletions were observed in rbcL-accD sequence, which was thus unsuitable for development as specific barcode. The ycf1b-2 barcode had DNA barcoding gap and high success rate of PCR amplification and DNA sequencing, which was the most suitable DNA barcode for L. lucidum identification and achieved an accurate result. In addition, to optimize the DNA extraction experiment, the authors extracted and analyzed the DNA of the exocarp, mesocarp, endocarp and seed of L. lucidum fruit. It was found that seed was the most effective part for DNA extraction, where DNAs of high concentration and quality were obtained, meeting the needs of species identification. In this study, the experimental method for DNA extraction of L. lucidum was optimized, and the seed was determined as the optimal part for DNA extraction and ycf1b-2 was the specific DNA barcode for L. lucidum identification. This study laid a foundation for the market regulation of L. lucidum.
Ligustrum/genetics*
;
Seeds
;
Fruit
;
Polymerase Chain Reaction
;
Research Design
2.Cloning and functional characterization of a lysophosphatidic acid acyltransferase gene from Perilla frutescens.
Yali ZHOU ; Xusheng HUANG ; Yueru HAO ; Guiping CAI ; Xianfei SHI ; Runzhi LI ; Jiping WANG
Chinese Journal of Biotechnology 2022;38(8):3014-3028
Perilla (Perilla frutescens L.) is an important edible-medicinal oil crop, with its seed containing 46%-58% oil. Of perilla seed oil, α-linolenic acid (C18:3) accounts for more than 60%. Lysophosphatidic acid acyltransferase (LPAT) is one of the key enzymes responsible for triacylglycerol assembly in plant seeds, controlling the metabolic flow from lysophosphatidic acid to phosphatidic acid. In this study, the LPAT2 gene from the developing seeds of perilla was cloned and designated as PfLPAT2. The expression profile of PfLPAT2 gene was examined in various tissues and different seed development stages of perilla (10, 20, 30, and 40 days after flowering, DAF) by quantitative real-time PCR (qRT-PCR). In order to detect the subcellular localization of PfLPAT2 protein, a fusion expression vector containing PfLPAT2 and GFP was constructed and transformed into Nicotiana benthamiana leaves by Agrobacterium-mediated infiltration. In order to explore the enzymatic activity and biological function of PfLPAT2 protein, an E. coli expression vector, a yeast expression vector and a constitutive plant overexpression vector were constructed and transformed into an E. coli mutant SM2-1, a wild-type Saccharomyces cerevisiae strain INVSc1, and a common tobacco (Nicotiana tabacum, variety: Sumsun NN, SNN), respectively. The results showed that the PfLPAT2 open reading frame (ORF) sequence was 1 155 bp in length, encoding 384 amino acid residues. Functional structure domain prediction showed that PfLPAT2 protein has a typical conserved domain of lysophosphatidic acid acyltransferase. qRT-PCR analysis indicated that PfLPAT2 gene was expressed in all tissues tested, with the peak level in seed of 20 DAF of perilla. Subcellular localization prediction showed that PfLPAT2 protein is localized in cytoplasm. Functional complementation assay of PfLPAT2 in E. coli LPAAT mutant (SM2-1) showed that PfLPAT2 could restore the lipid biosynthesis of SM2-1 cell membrane and possess LPAT enzyme activity. The total oil content in the PfLPAT2 transgenic yeast was significantly increased, and the content of each fatty acid component changed compared with that of the non-transgenic control strain. Particularly, oleic acid (C18:1) in the transgenic yeast significantly increased, indicating that PfLPAT2 has a higher substrate preference for C18:1. Importantly, total fatty acid content in the transgenic tobacco leaves increased by about 0.42 times compared to that of the controls, with the C18:1 content doubled. The increased total oil content and the altered fatty acid composition in transgenic tobacco lines demonstrated that the heterologous expression of PfLPAT2 could promote host oil biosynthesis and the accumulation of health-promoting fatty acids (C18:1 and C18:3). This study will provide a theoretical basis and genetic elements for in-depth analysis of the molecular regulation mechanism of perilla oil, especially the synthesis of unsaturated fatty acids, which is beneficial to the genetic improvement of oil quality of oil crops.
Acyltransferases
;
Cloning, Molecular
;
Escherichia coli/metabolism*
;
Fatty Acids
;
Perilla frutescens/metabolism*
;
Plant Oils
;
Plant Proteins/metabolism*
;
Saccharomyces cerevisiae/metabolism*
;
Seeds/chemistry*
;
Tobacco/genetics*
3.The physiology of plant seed aging: a review.
Peilin HAN ; Yueming LI ; Zihao LIU ; Wanli ZHOU ; Fan YANG ; Jinghong WANG ; Xiufeng YAN ; Jixiang LIN
Chinese Journal of Biotechnology 2022;38(1):77-88
Seed quality plays an important role in the agricultural and animal husbandry production, the effective utilization of genetic resources, the conservation of biodiversity and the restoration and reconstruction of plant communities. Seed aging is a common physiological phenomenon during storage. It is a natural irreversible process that occurs and develops along with the extension of seed storage time. It is not only related to the growth, yield and quality of seed and seedling establishment, but also has an important effect on the conservation, utilization and development of plant germplasm resources. The physiological mechanisms of seed aging are complex and diverse. Most studies focus on conventional physiological characterization, while systematic and comprehensive in-depth studies are lacking. Here we review the recent advances in understanding the physiology of seed aging process, including the methods of seed aging, the effect of aging on seed germination, and the physiological and molecular mechanisms of seed aging. The change of multiple physiological parameters, including seed vigor, electrical conductivity, malondialdehyde content and storage material in the seed, antioxidant enzyme activity and mitochondrial structure, were summarized. Moreover, insights into the mechanism of seed aging from the aspects of transcriptome, proteome and aging related gene function were summarized. This study may facilitate the research of seed biology and the conservation and utilization of germplasm resources.
Germination
;
Plants
;
Proteome
;
Seedlings
;
Seeds/genetics*
4.Effect of polysaccharides from seeds of Vaccaria segetalis in alleviating urinary tract infection induced bladder injury by inhibiting NLRP3 inflammasome.
Xin MAO ; Rong-Mei YAO ; Yan-Yan BAO ; Jing SUN ; Xiao-Lan CUI ; Hai-Jiang ZHANG ; Yu-Jing SHI
China Journal of Chinese Materia Medica 2021;46(13):3388-3393
To study the mechanism of polysaccharides from seeds of Vaccaria segetalis( PSV) in the treatment of bacterial cystitis through the NLRP3 inflammasome pathway. The rat model of urinary tract infection was used and treated with PSV,and the urine and bladders were collected. The level of interleukin-10( IL-10) in rat urine was detected by enzyme linked immunosorbent assay( ELISA). Western blot and immunofluorescence staining were used to detect the expressions of sonic hedgehog( SHH) and NLRP3 inflammasome [NOD-like receptor thermoprotein domain 3( NLRP3),apoptosis associated speck like protein( ASC) and pro-caspase-1]. The expression of Toll-like receptor pathway was detected by RT-PCR. The death of 5637 cells induced by uropathogenic Escherichia coli( UPEC) and lactate dehydrogenase( LDH) release were evaluated using live/dead staining. The results showed that in the rat bladder,the expressions of SHH,NLRP3 inflammasomes and Toll-like receptors were significantly up-regulated,and NLRP3 inflammasomes were significantly activated by UPEC infection. The administration with PSV could significantly increase the concentration of IL-10 in urine,inhibit the expressions of SHH,NLRP3 inflammasomes and Toll-like receptors in bladder,and inhibit the activation of NLRP3 inflammasomes. A large number of 5637 cells were dead after UPEC infection and caused LDH production. PSV could significantly inhibit the death of 5637 cells and the release of LDH. In conclusion,PSV could inhibit the expression and activation of NLRP3 inflammasomes by inhibiting the Toll-like receptor pathway,thereby mitigating the bladder injury.
Animals
;
Hedgehog Proteins
;
Inflammasomes/genetics*
;
Interleukin-1beta
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Polysaccharides/pharmacology*
;
Rats
;
Seeds
;
Urinary Bladder
;
Urinary Tract Infections/drug therapy*
;
Vaccaria
5.Selection of q RT-PCR reference genes for Amomum tsaoko seeds during dormancy release.
Li-Xiang YAO ; Chun-Liu PAN ; Li-Ying YU ; Zhu QIAO ; Mei-Qiong TANG ; Fan WEI
China Journal of Chinese Materia Medica 2021;46(15):3832-3837
Freshly collected seeds of Amomum tsaoko demonstrate obvious dormancy. Therefore, the selection of stable reference genes during seed dormancy release is very important for the subsequent functional research of related genes. In this study, ten commonly used reference genes(GAPDH, 40S, actin, tubulin, EIF4A-9, EIF2α, UBC, UBCE2, 60S, and UBQ) were selected as candidates for quantitative Real-time polymerase chain reaction(qRT-PCR) of the embryo samples of A. tsaoko at different dormancy release stages. Three kinds of software(BestKeeper, geNorm, and Normfinder) and the Delta CT method were used to evaluate the expression stability of the candidate reference genes, and the RefFinder online tool was employed to integrate the results and generate a comprehensive ranking. The results showed that the expression levels of the ten candidate reference genes differed greatly in different embryo samples. GAPDH and UBC had high expression levels, as manifested by the small Ct values. GeNorm identified 40S and UBCE2 as the most stable genes. NormFinder ranked EIF2α as the most stable gene and UBC as the least stable gene. UBCE2 was found to be the most stable gene and actin the least stable one by BestKeeper. Delta CT analysis suggested that the expression of 40S was most stable. UBCE2 was recommended as the most stably expressed gene by RefFinder. Thus, UBCE2 is the ideal reference gene for qRT-PCR analysis of A. tsaoko seeds at different dormancy release stages. The results may lay a foundation for analyzing the expression of related genes during seed dormancy release of A. tsaoko.
Amomum
;
Gene Expression Profiling
;
Real-Time Polymerase Chain Reaction
;
Reverse Transcriptase Polymerase Chain Reaction
;
Seeds/genetics*
6.Seed oil of Brucea javanica induces apoptosis through the PI3K/Akt signaling pathway in acute lymphocytic leukemia Jurkat cells.
Hong ZHANG ; Shi-Liang YIN ; Li-Hui WANG ; Li-Na JIA ; Guang-Yue SU ; Xiao-Qing LIU ; Fan ZHOU ; Peter BRESLIN ; Ran MENG ; Qi-Yi LI ; Jing-Yu YANG ; Chun-Fu WU
Chinese Journal of Natural Medicines (English Ed.) 2021;19(8):608-620
Brucea javanica oil emulsion (BJOE) has been used to treat tumor in China for more than 40 years. However, its components and effectiveness in the treatment of acute lymphocytic leukemia (ALL) and its mechanism of anti-cancer activity remain unknown. In the current study, high-performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD) was used to analyze the components of BJOE. Then, the anti-leukemia effects of BJOE were examined both in vitro and in vivo using ALL Jurkat cells and the p388 mouse leukemia transplant model, respectively. The primary ALL leukemia cells were also used to confirm the anti-leukemia effects of BJOE. The apoptotic-related results indicated that BJOE induced apoptosis in Jurkat cells and were suggestive of intrinsic apoptotic induction. Moreover, BJOE inhibited Akt (protein kinase B) activation and upregulated its downstream targets p53 and FoxO1 (forkhead box gene, group O-1) to initiate apoptosis. The activation of GSK3β was also involved. Our findings demonstrate that BJOE has anti-leukemia effects on ALL cells and can induce apoptosis in Jurkat cells through the phosphoinositide3-kinase (PI3K) /Akt signaling pathway.
Animals
;
Apoptosis
;
Brucea/chemistry*
;
Glycogen Synthase Kinase 3
;
Humans
;
Jurkat Cells
;
Mice
;
Phosphatidylinositol 3-Kinases/genetics*
;
Plant Oils/pharmacology*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Seeds/chemistry*
;
Signal Transduction
7.Identification and functional analysis of soybean stearoyl-ACP Δ⁹ desaturase (GmSAD) gene family.
Mimi DENG ; Baoling LIU ; Zhilong WANG ; Jin'ai XUE ; Hongmei ZHANG ; Runzhi LI
Chinese Journal of Biotechnology 2020;36(4):716-731
Stearoyl-ACP Δ⁹ desaturase (SAD) catalyzes the synthesis of monounsaturated oleic acid or palmitoleic acid in plastids. SAD is the key enzyme to control the ratio of saturated fatty acids to unsaturated fatty acids in plant cells. In order to analyze the regulation mechanism of soybean oleic acid synthesis, soybean (Glycine max) GmSAD family members were genome-wide identified, and their conserved functional domains and physicochemical properties were also analyzed by bioinformatics tools. The spatiotemporal expression profile of each member of GmSADs was detected by qRT-PCR. The expression vectors of GmSAD5 were constructed. The enzyme activity and biological function of GmSAD5 were examined by Agrobacterium-mediated transient expression in Nicotiana tabacum leaves and genetic transformation of oleic acid-deficient yeast (Saccharomyces cerevisiae) mutant BY4389. Results show that the soybean genome contains five GmSAD family members, all encoding an enzyme protein with diiron center and two conservative histidine enrichment motifs (EENRHG and DEKRHE) specific to SAD enzymes. The active enzyme protein was predicted as a homodimer. Phylogenetic analysis indicated that five GmSADs were divided into two subgroups, which were closely related to AtSSI2 and AtSAD6, respectively. The expression profiles of GmSAD members were significantly different in soybean roots, stems, leaves, flowers, and seeds at different developmental stages. Among them, GmSAD5 expressed highly in the middle and late stages of developmental seeds, which coincided with the oil accumulation period. Transient expression of GmSAD5 in tobacco leaves increased the oleic acid and total oil content in leaf tissue by 5.56% and 2.73%, respectively, while stearic acid content was reduced by 2.46%. Functional complementation assay in defective yeast strain BY4389 demonstrated that overexpression of GmSAD5 was able to restore the synthesis of monounsaturated oleic acid, resulting in high oil accumulation. Taken together, soybean GmSAD5 has strong selectivity to stearic acid substrates and can efficiently catalyze the biosynthesis of monounsaturated oleic acid. It lays the foundation for the study of soybean seed oleic acid and total oil accumulation mechanism, providing an excellent target for genetic improvement of oil quality in soybean.
Fatty Acid Desaturases
;
genetics
;
metabolism
;
Gene Expression Profiling
;
Oleic Acid
;
biosynthesis
;
Phylogeny
;
Plant Proteins
;
genetics
;
Seeds
;
chemistry
;
Soybeans
;
classification
;
enzymology
;
genetics
8.Drying temperature affects rice seed vigor via gibberellin, abscisic acid, and antioxidant enzyme metabolism.
Yu-Tao HUANG ; Wei WU ; Wen-Xiong ZOU ; Hua-Ping WU ; Dong-Dong CAO
Journal of Zhejiang University. Science. B 2020;21(10):796-810
Seed vigor is a key factor affecting seed quality. The mechanical drying process exerts a significant influence on rice seed vigor. The initial moisture content (IMC) and drying temperature are considered the main factors affecting rice seed vigor through mechanical drying. This study aimed to determine the optimum drying temperature for rice seeds according to the IMC, and elucidate the mechanisms mediating the effects of drying temperature and IMC on seed vigor. Rice seeds with three different IMCs (20%, 25%, and 30%) were dried to the target moisture content (14%) at four different drying temperatures. The results showed that the drying temperature and IMC had significant effects on the drying performance and vigor of the rice seeds. The upper limits of drying temperature for rice seeds with 20%, 25%, and 30% IMCs were 45, 42, and 38 °C, respectively. The drying rate and seed temperature increased significantly with increasing drying temperature. The drying temperature, drying rate, and seed temperature showed extremely significant negative correlations with germination energy (GE), germination rate, germination index (GI), and vigor index (VI). A high IMC and drying temperature probably induced a massive accumulation of hydrogen peroxide (H2O2) and superoxide anions in the seeds, enhanced superoxide dismutase (SOD) and catalase (CAT) activity, and increased the abscisic acid (ABA) content. In the early stage of seed germination, the IMC and drying temperature regulated seed germination through the metabolism of H2O2, gibberellin acid (GA), ABA, and α-amylase. These results indicate that the metabolism of reactive oxygen species (ROS), antioxidant enzymes, GA, ABA, and α-amylase might be involved in the mediation of the effects of drying temperature on seed vigor. The results of this study provide a theoretical basis and technical guidance for the mechanical drying of rice seeds.
Abscisic Acid/metabolism*
;
Antioxidants/pharmacology*
;
Catalase/metabolism*
;
Gene Expression Regulation, Plant/drug effects*
;
Germination
;
Gibberellins/metabolism*
;
Hydrogen Peroxide/chemistry*
;
Malondialdehyde/chemistry*
;
Oryza/metabolism*
;
Oxygen/chemistry*
;
Plant Proteins/genetics*
;
Reactive Oxygen Species
;
Seeds/metabolism*
;
Superoxide Dismutase/metabolism*
;
Superoxides/chemistry*
;
Temperature
;
Weather
;
alpha-Amylases/metabolism*
9.Study on mechanism of Cuscutae Semen flavonoids in improving reproductive damage of Tripterygium Glycosides Tablets in rats based on high-throughput transcriptome sequencing.
Bo ZHANG ; Hang SU ; Xian-Qing REN ; Wei-Xia LI ; Ying DING ; Xia ZHANG ; Wen-Sheng ZHAI ; Chun-Dong SONG
China Journal of Chinese Materia Medica 2019;44(16):3478-3485
Tripterygium Glycosides Tablets has good anti-inflammatory and immunomodulatory activities,but its reproductive damage is significant. Previous studies of the research group have found that Cuscutae Semen flavonoids can improve spermatogenic cell damage caused by Tripterygium Glycosides Tablets by regulating spermatogenic cell cycle,apoptosis and related protein expression,but the mechanism of action at the gene level is still unclear. In this study,Illumina high-throughput sequencing platform was applied in transcriptional sequencing of spermatogenic cells of rats after the intervention of Cuscutae Semen flavonoids and Tripterygium Glycosides Tablets. Differentially expressed genes were screened out and the GO enrichment and KEGG pathway analysis of differentially expressed genes were conducted to explore the mechanism of Cuscutae Semen flavonoids in improving reproductive injury caused by Tripterygium Glycosides Tablets. The results showed that 794 up-regulated genes and 491 down-regulated genes were screened in Tripterygium Glycosides Tablets group compared with the blank group. Compared with Tripterygium Glycosides Tablets,440 up-regulated genes and 784 down-regulated genes were screened in the Cuscutae Semen flavonoids+Tripterygium Glycosides Tablets group. Among them,the gene closely related to reproductive function is DNMT3 L. Analysis of GO function and KEGG signaling pathway enrichment showed that the above differentially expressed genes were mainly enriched in cell,cell process,catalytic activity,binding,ovarian steroid synthesis,thyroid hormone and other functions and pathways. The thyroid hormone signaling pathway was the common enrichment pathway of the two control groups. In a word,Cuscutae Semen flavonoids has a good treatment effect on male reproductive damage caused by Tripterygium Glycosides Tablets. The mechanism may be closely related to up-regulation of DNMT3 L genes and intervention of thyroid hormone signaling pathway. At the same time,the discovery of many different genes provides valuable information for study on the mechanism of Cuscutae Semen flavonoids and Tripterygium Glycosides Tablets compatibility decreasing toxicity and increasing efficiency.
Animals
;
Cuscuta
;
chemistry
;
DNA (Cytosine-5-)-Methyltransferases
;
genetics
;
Female
;
Flavonoids
;
pharmacology
;
Genitalia
;
drug effects
;
pathology
;
Glycosides
;
toxicity
;
High-Throughput Nucleotide Sequencing
;
Male
;
Rats
;
Seeds
;
chemistry
;
Signal Transduction
;
Tablets
;
Thyroid Hormones
;
genetics
;
Transcriptome
;
Tripterygium
;
toxicity
10.Influence of light on gene expression of key synthesis enzyme genes FtANR and FtLAR about proanthocyanidin in seeds of homologous plant of food and medicine Fagopyrum tataricum.
Chun-Li JIANG ; Xin-Yao SU ; Ya-Chun XU ; Er-Yi WU ; Yu-Hua SHI ; Dong ZHANG ; Qing-Fu CHEN ; Wei SUN ; Jian-Ping XUE
China Journal of Chinese Materia Medica 2018;43(3):469-477
Tartary buckwheat Fagopyrum tataricum is an important medicinal and functional herb due to its rich content of flavonoids in the seeds. F.tataricum exhibited good functions for free radicals scavenging, anti-oxidation, anti-aging activities. Although much genetic knowledge of the synthesis, regulation, accumulation of rutin, the genetic basis of proanthocyanidins(PAs) in tartary buckwheat and their related gene expression changes under different lights(blue, red, far red, ultraviolet light) remain largely unexplored. In this study, we cloned one anthocyanidin reductase gene(ANR) and two leucocyanidin reductase gene(LAR) named FtANR,FtLAR1,FtLAR3 involved in formation of(+)-catechin and(-)-epicatechin precusor proanthocyanidin by digging out F. tataricum seed transcriptome data. The expression data showed that the opposite influence of red light on these gene transcript level compared to others lights. The expression levels of FtANR and FtLAR1 decreased and FtLAR3 appeared increment after exposed in the red light, while the expression levels of those genes appeared opposite result after exposed in the blue and far red light.
Fagopyrum
;
enzymology
;
radiation effects
;
Gene Expression Regulation, Plant
;
radiation effects
;
Light
;
NADH, NADPH Oxidoreductases
;
genetics
;
Plant Proteins
;
genetics
;
Proanthocyanidins
;
biosynthesis
;
Seeds
;
enzymology
;
radiation effects

Result Analysis
Print
Save
E-mail