1.Development status and problems of traditional Chinese medicine seed industry and suggestions for it.
Bao-Juan XUE ; Ying SUN ; Yang ZHAO ; Jun-Shu GE ; Yi WANG ; Zhe-Yuan LIU ; Jiang-Bin LI
China Journal of Chinese Materia Medica 2025;50(4):1132-1136
The inheritance, innovation, and development of traditional Chinese medicine(TCM) need to be based on Chinese medicinal materials. The TCM seed industry is the source of TCM production, which is related to the stable supply and quality safety of TCM. This paper summarizes the basic situation of the TCM seed industry and introduces relevant policies and regulations to TCM seeds in the seed industry and the TCM field. At present, the Management Measures of TCM Seeds and Seedlings has not yet promulgated, and TCM seeds are classified as non-major crops in the category of crops for management. This paper also describes the current situation of TCM seed and seedling system construction, which is in the development stage, from six aspects, including the construction of TCM seed industry technical support system; the establishment of TCM seed standard; the construction of germplasm resource preservation system; TCM seed testing, variety registration, and variety protection; production and management of TCM seeds; TCM seed supervision. According to the development status of the TCM seed industry, four problems are put forward, including imperfect systems and standards relevant to TCM seeds, insufficient supervision and law enforcement regarding TCM seeds, insufficient policy measures and capital investment to promote the development of the industry, and the industry's falling into a low-level cycle.Accordingly, four suggestions are provided, including improving laws, regulations, and policies, perfecting standards and norms,strengthening supervision and law enforcement, and promoting support system construction, in order to boost the high-quality development of the TCM seed industry.
Seeds/chemistry*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/standards*
;
Plants, Medicinal/chemistry*
2.Effect and mechanism of Moringa oleifera leaves, seeds, and velamen in improving learning and memory impairments in mice based on transcriptomic and metabolomic.
Zhi-Hao WANG ; Shu-Yi FENG ; Tao LI ; Wan-Ping ZHOU ; Jin-Yu WANG ; Yang LIU ; Lin ZHANG ; Yuan-Yuan XIE ; Xiu-Lan HUANG ; Zhi-Yong LI ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(13):3793-3812
Moringa oleifera, widely utilized in Ayurvedic medicine, is recognized for its leaves, seeds, and velamen possessing traditional effects such as vātahara(wind alleviation), sirovirecaka(brain clearing), and hridya(mental nourishment). This study aims to identify the medicinal part of ■ in the Sārasvata ghee formulation as described in the Bower Manuscript, while investigating the ameliorative effects of different medicinal parts of M. oleifera on learning and memory deficits in mice and elucidating the underlying molecular mechanisms. A total of 144 male ICR mice were randomly assigned to the following groups: control, model(scopolamine hydrobromide, Sco, 2 mg·kg~(-1)), donepezil(donepezil hydrochloride, Don, 3 mg·kg~(-1)), M. oleifera leaf low-, medium-, and high-dose groups(0.5, 1, 2 g·kg~(-1)), M. oleifera seeds low-, medium-, and high-dose groups(0.25, 0.5, 1 g·kg~(-1)), and M. oleifera velamen low-, medium-, and high-dose groups(0.31, 0.62, 1.24 g·kg~(-1)). Learning and memory abilities were assessed using the passive avoidance test and Morris water maze. Nissl and HE staining were employed to examine histopathological changes in the hippocampus. Transcriptomics and targeted metabolomics were used to screen differential genes and metabolites, with MetaboAnalyst 6.0 and O2PLS methods applied to identify key disease-related targets and pathways. RESULTS:: demonstrated that M. oleifera leaf(1 g·kg~(-1)) significantly ameliorated Sco-induced learning and memory deficits, outperforming M. oleifera seeds(0.25 g·kg~(-1)) and M. oleifera velamen(1.24 g·kg~(-1)). This was evidenced by improved behavioral performance, reversal of neuronal damage, and reduced acetylcholinesterase(AChE) activity. Multi-omics analysis revealed that M. oleifera leaf upregulated Tuba1c gene expression through the synaptic vesicle cycle, enhancing glutamate(Glu), dopamine(DA), and acetylcholine(ACh) release via Tuba1c-Glu associations for neuroprotection. M. oleifera seeds targeted the dopaminergic synapse pathway, promoting memory consolidation through Drd2-ACh associations. M. oleifera velamen was associated with the cocaine addiction pathway, modulating dopamine metabolism via Adora2a-DOPAC, with limited relevance to learning and memory. In conclusion, M. oleifera leaf exhibits superior efficacy and mechanistic advantages over M. oleifera seeds and velamen, suggesting that the ■ in the Sārasvata ghee formulation is likely M. oleifera leaf, providing scientific evidence for its identification in ancient texts.
Animals
;
Moringa oleifera/chemistry*
;
Male
;
Mice
;
Seeds/chemistry*
;
Plant Leaves/chemistry*
;
Mice, Inbred ICR
;
Memory Disorders/psychology*
;
Transcriptome/drug effects*
;
Memory/drug effects*
;
Learning/drug effects*
;
Metabolomics
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Maze Learning/drug effects*
3.Brucea javanica Seed Oil Emulsion and Shengmai Injections Improve Peripheral Microcirculation in Treatment of Gastric Cancer.
Li QUAN ; Wen-Hao NIU ; Fu-Peng YANG ; Yan-da ZHANG ; Ru DING ; Zhi-Qing HE ; Zhan-Hui WANG ; Chang-Zhen REN ; Chun LIANG
Chinese journal of integrative medicine 2025;31(4):299-310
OBJECTIVE:
To explore and verify the effect and potential mechanism of Brucea javanica Seed Oil Emulsion Injection (YDZI) and Shengmai Injection (SMI) on peripheral microcirculation dysfunction in treatment of gastric cancer (GC).
METHODS:
The potential mechanisms of YDZI and SMI were explored through network pharmacology and verified by cellular and clinical experiments. Human microvascular endothelial cells (HMECs) were cultured for quantitative real-time polymerase chain reaction, Western blot analysis, and human umbilical vein endothelial cells (HUVECs) were cultured for tube formation assay. Twenty healthy volunteers and 97 patients with GC were enrolled. Patients were divided into surgical resection, surgical resection with chemotherapy, and surgical resection with chemotherapy combining YDZI and SMI groups. Forearm skin blood perfusion was measured and recorded by laser speckle contrast imaging coupled with post-occlusive reactive hyperemia. Cutaneous vascular conductance and microvascular reactivity parameters were calculated and compared across the groups.
RESULTS:
After network pharmacology analysis, 4 ingredients, 82 active compounds, and 92 related genes in YDZI and SMI were screened out. β-Sitosterol, an active ingredient and intersection compound of YDZI and SMI, upregulated the expression of vascular endothelial growth factor A (VEGFA) and prostaglandin-endoperoxide synthase 2 (PTGS2, P<0.01), downregulated the expression of caspase 9 (CASP9) and estrogen receptor 1 (ESR1, P<0.01) in HMECs under oxaliplatin stimulation, and promoted tube formation through VEGFA. Chemotherapy significantly impaired the microvascular reactivity in GC patients, whereas YDZI and SMI ameliorated this injury (P<0.05 or P<0.01).
CONCLUSIONS
YDZI and SMI ameliorated peripheral microvascular reactivity in GC patients. β-Sitosterol may improve peripheral microcirculation by regulating VEGFA, PTGS2, ESR1, and CASP9.
Humans
;
Microcirculation/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Stomach Neoplasms/physiopathology*
;
Emulsions
;
Male
;
Plant Oils/administration & dosage*
;
Brucea/chemistry*
;
Middle Aged
;
Female
;
Drug Combinations
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Seeds/chemistry*
;
Injections
;
Vascular Endothelial Growth Factor A/metabolism*
;
Aged
;
Network Pharmacology
4.A GA-BP neural network model based on spectrum-effect relationship for assessing spectrum-effect score and quality evaluation of Cassia seeds extract.
Haiyan YAN ; Heng WANG ; Chuncai ZOU
Journal of Southern Medical University 2025;45(10):2092-2103
OBJECTIVES:
To construct a GA-BP neural network model based on the spectrum-effect relationship of Cassia seeds extract and test its performance for quality control of Cassia seeds using spectrum-effect score.
METHODS:
The HPLC fingerprints of Cassia seeds extract (0.1, 0.2, and 0.4 g/mL) were established. In a mouse model of 5-Fu-induced liver injury treated with 0.4, 0.8, and 1.6 g/kg of Cassia seeds extract, the pharmacodynamics parameters were measured to calculate the comprehensive efficacy using AHP-EWM. A GA-BP neural network model between the fingerprints and comprehensive efficacy was constructed, and the corresponding predicted comprehensive efficacy was obtained. The spectrum-effect relationship between the fingerprints and the measured and predicted comprehensive efficacy was established using grey correlation method followed by Gaussian fitting analysis. The spectral efficiency score was calculated using the relative peak area of the fingerprints and the correlation degree of the spectral efficiency. The reliability of the data was tested using the Z-ratio score method. The limit range of the spectral efficiency score was determined and the quality of the verification samples was evaluated.
RESULTS:
The error between the predicted value using the GA-BP neural network model and the measured value of the comprehensive efficacy was less than 0.2. Gaussian fitting analysis showed good fitting between the spectrum-effect relationship data of the measured and predicted comprehensive efficacy. The limit of the spectral efficiency score was 6.16-7.30. The prediction results for each verification group were consistent with the experimental results and within the limit of spectral efficiency score, and the results of Z-ratio score analysis demonstrated good data reliability.
CONCLUSIONS
The GA-BP neural network model can effectively predict the comprehensive efficacy of Cassia seeds extract, and the established spectrum-effect scoring method can be used for quality evaluation of samples.
Neural Networks, Computer
;
Animals
;
Seeds/chemistry*
;
Mice
;
Cassia/chemistry*
;
Quality Control
;
Drugs, Chinese Herbal/pharmacology*
;
Plant Extracts/pharmacology*
;
Male
5.Nigella sativa L. seed extract alleviates oxidative stress-induced cellular senescence and dysfunction in melanocytes.
Ben NIU ; Xiaohong AN ; Yongmei CHEN ; Ting HE ; Xiao ZHAN ; Xiuqi ZHU ; Fengfeng PING ; Wei ZHANG ; Jia ZHOU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(2):203-213
Nigella sativa L. seeds have been traditionally utilized in Chinese folk medicine for centuries to treat vitiligo. This study revealed that the ethanolic extract of Nigella sativa L. (HZC) enhances melanogenesis and mitigates oxidative stress-induced cellular senescence and dysfunction in melanocytes. In accordance with established protocols, the ethanol fraction from Nigella sativa L. seeds was extracted, concentrated, and lyophilized to evaluate its herbal effects via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, tyrosinase activity evaluation, measurement of cellular melanin contents, scratch assays, senescence-associated β-galactosidase (SA-β-gal) staining, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis for expression profiling of experimentally relevant proteins. The results indicated that HZC significantly enhanced tyrosinase activity and melanin content while notably increasing the protein expression levels of Tyr, Mitf, and gp100 in B16F10 cells. Furthermore, HZC effectively mitigated oxidative stress-induced cellular senescence, improved melanocyte condition, and rectified various functional impairments associated with melanocyte dysfunction. These findings suggest that HZC increases melanin synthesis in melanocytes through the activation of the MAPK, PKA, and Wnt signaling pathways. In addition, HZC attenuates oxidative damage induced by H2O2 therapy by activating the nuclear factor E2-related factor 2-antioxidant response element (Nrf2-ARE) pathway and enhancing the activity of downstream antioxidant enzymes, thus preventing premature senescence and dysfunction in melanocytes.
Oxidative Stress/drug effects*
;
Melanocytes/cytology*
;
Cellular Senescence/drug effects*
;
Nigella sativa/chemistry*
;
Plant Extracts/pharmacology*
;
Seeds/chemistry*
;
Mice
;
Animals
;
Melanins/metabolism*
;
Monophenol Monooxygenase/metabolism*
;
Humans
6.Structurally novel tryptamine-derived alkaloids from the seeds of Peganum harmala and their antiviral activities against respiratory syncytial virus.
Zhongnan WU ; Yubo ZHANG ; Guocai WANG ; Qing TANG ; Yaolan LI ; Xiaoqing XIE ; Yushen LIANG ; Wen CHENG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):972-979
Peganum harmala L. (P. harmala) is a significant economic and medicinal plant. The seeds of P. harmala have been extensively utilized in traditional Chinese medicine, Uighur medicine, and Mongolian medicine, as documented in the Drug Standard of the Ministry of Health of China. Twelve novel tryptamine-derived alkaloids (1-12) and eight known compounds (13-20) were isolated from P. harmala seeds. Compounds 1 and 2 represent the first reported instances of tryptamine-derived heteromers, comprising tryptamine and aniline fragments with previously undocumented C-3-N-1' linkage and C-3-C-4' connection, respectively. Compounds 3-5 were identified as indole-quinazoline heteromers, exhibiting a novel C-3 and NH-1' linkage between indole and quinazoline-derived fragments. Compound 6 demonstrates the dimerization pattern of C-C linked tryptamine-quinazoline dimer. Compound 8 represents a tryptamine-derived heterodimer with a distinctive carbon skeleton, featuring an unusual spiro-tricyclic ring (7) and conventional bicyclic tryptamine. Compounds 9-11 constitute novel 6/5/5/5 spiro-tetracyclic tryptamine-derived alkaloids presenting a unique ring system of tryptamine-spiro-pyrrolizine. Compounds 1-3 and 6-11 were identified as racemates. Compounds 2, 7, 9, 10, and 12 were confirmed via X-ray crystallographic analysis. All isolated compounds (1-20) exhibited varying degrees of antiviral efficacy against respiratory syncytial virus (RSV). Notably, the anti-RSV activity of compound 12 (IC50 5.01 ± 0.14 μmol·L-1) surpassed that of the positive control (ribavirin, IC50 6.23 ± 0.95 μmol·L-1), as validated through plaque reduction and immunofluorescence assays. The identification of anti-RSV compounds from P. harmala seeds may enhance the development and application of this plant in antiviral therapeutic products.
Antiviral Agents/isolation & purification*
;
Tryptamines/isolation & purification*
;
Peganum/chemistry*
;
Seeds/chemistry*
;
Alkaloids/isolation & purification*
;
Molecular Structure
;
Humans
;
Respiratory Syncytial Viruses/drug effects*
;
Plant Extracts/pharmacology*
;
Drugs, Chinese Herbal/pharmacology*
7.Chemical constituents and their α-glucosidase inhibitory activities of seeds of Moringa oleifera.
Liang CHEN ; Yin-Zhi CEN ; Yang-Li TU ; Xiang-Jie DAI ; Yong-Jun LI ; Xiao-Sheng YANG ; Lin-Zhen LI
China Journal of Chinese Materia Medica 2023;48(17):4686-4692
The chemical constituents of the seeds of Moringa oleifera were isolated and purified by using Sephadex LH-20, Toyo-pearl HW-40F, silica gel, ODS, and MCI column chromatography. The structures of compounds were identified by high-resolution mass spectrometry, ~1H-NMR, ~(13)C-NMR, HMQC, HMBC, and ~1H-~1H COSY, as well as physicochemical properties of compounds and literature data. Twelve compounds were isolated from 30% ethanol fraction of the seeds of M. oleifera and identified as ethyl-4-O-α-L-rhamnosyl-α-L-rhamnoside(1), ethyl-3-O-α-L-rhamnosyl-α-L-rhamnoside(2),(4-hydroxybenzyl)ethyl carbamate(3),(4-aminophenyl)acetic acid(4), ethyl-α-L-rhamnoside(5), methyl-α-L-rhamnoside(6), moringapyranosyl(7), 2-[4-(α-L-rhamnosyl)phenyl]methyl acetate(8), niaziridin(9), 5-hydroxymethyl furfural(10), 4-hydroxybenzeneacetamide(11), and 4-hydroxybenzoic acid(12). Among them, compounds 1 and 2 are two new compounds, compound 3 is a new natural product, and compounds 4-5 were yielded from Moringa plant for the first time. All compounds were evaluated for α-glucosidase inhibitory activity in vitro. Compound 10 showed excellent inhibitory activity with IC_(50) of 210 μg·mL~(-1).
Moringa oleifera/chemistry*
;
alpha-Glucosidases
;
Moringa
;
Seeds
;
Plant Extracts/pharmacology*
8.Comparison of chemical compositions of different parts of Xanthoceras sorbifolium seeds based on UHPLC-Q-Orbitrap HRMS.
Jun YUAN ; Hong-Wei ZHANG ; Zhen-Ling ZHANG ; Ya-Ning WU ; Ya-Jing LI
China Journal of Chinese Materia Medica 2023;48(23):6347-6360
Xanthoceras sorbifolium seeds have a wide range of applications in the food and pharmaceutical industries. To compare and analyze the chemical compositions of different parts of X. sorbifolium seeds and explore the potential value and research prospects of non-medicinal parts, this study used ultra-high-performance liquid chromatography quadrupole Orbitrap high-resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) to detect the chemical composition of various parts of the seeds. A total of 82 components were preliminary identified from X. sorbifolium seeds, including 5 amino acids, 4 polyphenols, 3 phenylpropionic acids, 7 organic acids, 15 flavonoids, 6 glycosides, and 23 saponins. Mass spectrometry molecular networking(MN) analysis was conducted on the results from different parts of the seeds, revealing significant differences in the components of the seed kernel, seed coat, and seed shell. The saponins and flavonoids in the seed kernel were superior in terms of variety and content to those in the seed coat and shell. Based on the chromatographic peaks of different parts from multiple batches of samples, multivariate statistical analysis was carried out. Four differential components were determined using HPLC, and the average content of these components in the seed kernel, seed coat, and seed shell were as follows: 0.183 6, 0.887 4, and 1.440 1 mg·g~(-1) for fraxin; 0.035 8, 0.124 1, and 0.044 5 mg·g~(-1) for catechin; 0.032 9, 0.072 0, and 0.221 5 mg·g~(-1) for fraxetin; 0.435 9, 2.114 7, and 0.259 7 mg·g~(-1) for epicatechin. The results showed that catechin and fraxetin had relatively low content in all parts, while fraxin had higher content in the seed coat and seed shell, and epicatechin had higher content in the seed kernel and seed coat. Therefore, the seed coat and seed shell possess certain development value. This study provides rapid analysis and comparison of the chemical compositions of different parts of X. sorbifolium seeds, which offers an experimental basis for the research and clinical application of medicinal substances in X. sorbifolium seeds.
Chromatography, High Pressure Liquid/methods*
;
Catechin/analysis*
;
Flavonoids/analysis*
;
Seeds/chemistry*
;
Saponins/analysis*
9.Comparison of active components in different parts of Perilla frutescens and its pharmacological effects.
Liang-Qi ZHANG ; Wen-Jiao LI ; Mei-Feng XIAO
China Journal of Chinese Materia Medica 2023;48(24):6551-6571
Perilla frutescens is a widely used medicinal and edible plant with a rich chemical composition throughout its whole plant. The Chinese Pharmacopoeia categorizes P. frutescens leaves(Perillae Folium), seeds(Perillae Fructus), and stems(Perillae Caulis) as three distinct medicinal parts due to the differences in types and content of active components. Over 350 different bioactive compounds have been reported so far, including volatile oils, flavonoids, phenolic acids, triterpenes, sterols, and fatty acids. Due to the complexity of its chemical composition, P. frutescens exhibits diverse pharmacological effects, including antibacterial, anti-inflammatory, anti-allergic, antidepressant, and antitumor activities. While scholars have conducted a substantial amount of research on different parts of P. frutescens, including analysis of their chemical components and pharmacological mechanisms of action, there has yet to be a systematic comparison and summary of chemical components, pharmacological effects, and mechanisms of action. Therefore, this study overviewed the chemical composition and structures of Perillae Folium, Perillae Fructus, and Perillae Caulis, and summarized the pharmacological effects and mechanisms of P. frutescens to provide a reference for better development and utilization of this valuable plant.
Perilla frutescens/chemistry*
;
Plant Extracts/pharmacology*
;
Seeds/chemistry*
;
Fruit/chemistry*
;
Oils, Volatile/analysis*
;
Plant Leaves/chemistry*
10.Optimization of ethanol reflux extraction process of Ziziphi Spinosae Semen- Schisandrae Sphenantherae Fructus based on network pharmacology combined with response surface methodology.
Mian HUANG ; Yu-Meng SONG ; Xi-Yue WANG ; Bing-Tao ZHAI ; Jiang-Xue CHENG ; Xiao-Fei ZHANG ; Dong-Yan GUO
China Journal of Chinese Materia Medica 2023;48(4):966-977
The present study optimized the ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair by network pharmacology and Box-Behnken method. Network pharmacology and molecular docking were used to screen out and verify the potential active components of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus, and the process evaluation indexes were determined in light of the components of the content determination under Ziziphi Spinosae Semen and Schisandrae Sphenantherae Fructus in the Chinese Pharmacopoeia(2020 edition). The analytic hierarchy process(AHP) was used to determine the weight coefficient of each component, and the comprehensive score was calculated as the process evaluation index. The ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus was optimized by the Box-Behnken method. The core components of the Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair were screened out as spinosin, jujuboside A, jujuboside B, schisandrin, schisandrol, schisandrin A, and schisandrin B. The optimal extraction conditions obtained by using the Box-Behnken method were listed below: extraction time of 90 min, ethanol volume fraction of 85%, and two times of extraction. Through network pharmacology and molecular docking, the process evaluation indexes were determined, and the optimized process was stable, which could provide an experimental basis for the production of preparations containing Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus.
Ethanol
;
Molecular Docking Simulation
;
Network Pharmacology
;
Seeds/chemistry*
;
Ziziphus/chemistry*
;
Plant Extracts/chemistry*
;
Schisandra/chemistry*
;
Fruit/chemistry*
;
Technology, Pharmaceutical

Result Analysis
Print
Save
E-mail