1.Mock communities to assess biases in nextgeneration sequencing of bacterial species representation
Younjee HWANG ; Ju Yeong KIM ; Se Il KIM ; Ji Yeon SUNG ; Hye Su MOON ; Tai-Soon YONG ; Ki Ho HONG ; Hyukmin LEE ; Dongeun YONG
Annals of Clinical Microbiology 2025;28(1):3-
Background:
The 16S rRNA-targeted next-generation sequencing (NGS) has been widely used as the primary tool for microbiome analysis. However, whether the sequenced microbial diversity absolutely represents the original sample composition remains unclear. This study aimed to evaluate whether 16S rRNA gene-targeted NGS accurately captures bacterial community composition.
Methods:
Mock communities were constructed using equal amounts of DNA from 18 bacterial strains in three formats: genomic DNA, recombinant plasmids, and polymerase chain reaction (PCR) templates. The V3V4 region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq.
Results:
Data regression analysis revealed that the recombinant plasmid produced more accurate and precise correlation curve than that by the gDNA and PCR products, with a slope closest to 1 (1.0082) and the highest R² value (0.9975). Despite the same input amount of bacterial DNA, the NGS read distribution varied across all three mock communities. Using multiple regression analysis, we found that the guanine-cytosine (GC) content of the V3V4 region, 16S rRNA gene, size of gDNA, and copy number of 16S rRNA were significantly associated with the NGS output of each bacterial species.
Conclusion
This study demonstrated that recombinant plasmids are the preferred option for quality control and that NGS output is biased owing to certain bacterial characteristics, such as %GC content, gDNA size, and 16S rRNA gene copy number. Further research is required to develop a system that compensates for NGS process biases using mock communities.
2.Erratum to "Potential Role of Dietary Salmon Nasal Cartilage Proteoglycan on UVB-Induced Photoaged Skin" Biomol Ther 32(2), 249-260 (2024)
Hae Ran LEE ; Seong-Min HONG ; Kyohee CHO ; Seon Hyeok KIM ; Eunji KO ; Eunyoo LEE ; Hyun Jin KIM ; Se Yeong JEON ; Seon Gil DO ; Sun Yeou KIM
Biomolecules & Therapeutics 2025;33(2):415-415
3.Mock communities to assess biases in nextgeneration sequencing of bacterial species representation
Younjee HWANG ; Ju Yeong KIM ; Se Il KIM ; Ji Yeon SUNG ; Hye Su MOON ; Tai-Soon YONG ; Ki Ho HONG ; Hyukmin LEE ; Dongeun YONG
Annals of Clinical Microbiology 2025;28(1):3-
Background:
The 16S rRNA-targeted next-generation sequencing (NGS) has been widely used as the primary tool for microbiome analysis. However, whether the sequenced microbial diversity absolutely represents the original sample composition remains unclear. This study aimed to evaluate whether 16S rRNA gene-targeted NGS accurately captures bacterial community composition.
Methods:
Mock communities were constructed using equal amounts of DNA from 18 bacterial strains in three formats: genomic DNA, recombinant plasmids, and polymerase chain reaction (PCR) templates. The V3V4 region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq.
Results:
Data regression analysis revealed that the recombinant plasmid produced more accurate and precise correlation curve than that by the gDNA and PCR products, with a slope closest to 1 (1.0082) and the highest R² value (0.9975). Despite the same input amount of bacterial DNA, the NGS read distribution varied across all three mock communities. Using multiple regression analysis, we found that the guanine-cytosine (GC) content of the V3V4 region, 16S rRNA gene, size of gDNA, and copy number of 16S rRNA were significantly associated with the NGS output of each bacterial species.
Conclusion
This study demonstrated that recombinant plasmids are the preferred option for quality control and that NGS output is biased owing to certain bacterial characteristics, such as %GC content, gDNA size, and 16S rRNA gene copy number. Further research is required to develop a system that compensates for NGS process biases using mock communities.
4.Mock communities to assess biases in nextgeneration sequencing of bacterial species representation
Younjee HWANG ; Ju Yeong KIM ; Se Il KIM ; Ji Yeon SUNG ; Hye Su MOON ; Tai-Soon YONG ; Ki Ho HONG ; Hyukmin LEE ; Dongeun YONG
Annals of Clinical Microbiology 2025;28(1):3-
Background:
The 16S rRNA-targeted next-generation sequencing (NGS) has been widely used as the primary tool for microbiome analysis. However, whether the sequenced microbial diversity absolutely represents the original sample composition remains unclear. This study aimed to evaluate whether 16S rRNA gene-targeted NGS accurately captures bacterial community composition.
Methods:
Mock communities were constructed using equal amounts of DNA from 18 bacterial strains in three formats: genomic DNA, recombinant plasmids, and polymerase chain reaction (PCR) templates. The V3V4 region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq.
Results:
Data regression analysis revealed that the recombinant plasmid produced more accurate and precise correlation curve than that by the gDNA and PCR products, with a slope closest to 1 (1.0082) and the highest R² value (0.9975). Despite the same input amount of bacterial DNA, the NGS read distribution varied across all three mock communities. Using multiple regression analysis, we found that the guanine-cytosine (GC) content of the V3V4 region, 16S rRNA gene, size of gDNA, and copy number of 16S rRNA were significantly associated with the NGS output of each bacterial species.
Conclusion
This study demonstrated that recombinant plasmids are the preferred option for quality control and that NGS output is biased owing to certain bacterial characteristics, such as %GC content, gDNA size, and 16S rRNA gene copy number. Further research is required to develop a system that compensates for NGS process biases using mock communities.
5.Erratum to "Potential Role of Dietary Salmon Nasal Cartilage Proteoglycan on UVB-Induced Photoaged Skin" Biomol Ther 32(2), 249-260 (2024)
Hae Ran LEE ; Seong-Min HONG ; Kyohee CHO ; Seon Hyeok KIM ; Eunji KO ; Eunyoo LEE ; Hyun Jin KIM ; Se Yeong JEON ; Seon Gil DO ; Sun Yeou KIM
Biomolecules & Therapeutics 2025;33(2):415-415
6.Mock communities to assess biases in nextgeneration sequencing of bacterial species representation
Younjee HWANG ; Ju Yeong KIM ; Se Il KIM ; Ji Yeon SUNG ; Hye Su MOON ; Tai-Soon YONG ; Ki Ho HONG ; Hyukmin LEE ; Dongeun YONG
Annals of Clinical Microbiology 2025;28(1):3-
Background:
The 16S rRNA-targeted next-generation sequencing (NGS) has been widely used as the primary tool for microbiome analysis. However, whether the sequenced microbial diversity absolutely represents the original sample composition remains unclear. This study aimed to evaluate whether 16S rRNA gene-targeted NGS accurately captures bacterial community composition.
Methods:
Mock communities were constructed using equal amounts of DNA from 18 bacterial strains in three formats: genomic DNA, recombinant plasmids, and polymerase chain reaction (PCR) templates. The V3V4 region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq.
Results:
Data regression analysis revealed that the recombinant plasmid produced more accurate and precise correlation curve than that by the gDNA and PCR products, with a slope closest to 1 (1.0082) and the highest R² value (0.9975). Despite the same input amount of bacterial DNA, the NGS read distribution varied across all three mock communities. Using multiple regression analysis, we found that the guanine-cytosine (GC) content of the V3V4 region, 16S rRNA gene, size of gDNA, and copy number of 16S rRNA were significantly associated with the NGS output of each bacterial species.
Conclusion
This study demonstrated that recombinant plasmids are the preferred option for quality control and that NGS output is biased owing to certain bacterial characteristics, such as %GC content, gDNA size, and 16S rRNA gene copy number. Further research is required to develop a system that compensates for NGS process biases using mock communities.
7.Mock communities to assess biases in nextgeneration sequencing of bacterial species representation
Younjee HWANG ; Ju Yeong KIM ; Se Il KIM ; Ji Yeon SUNG ; Hye Su MOON ; Tai-Soon YONG ; Ki Ho HONG ; Hyukmin LEE ; Dongeun YONG
Annals of Clinical Microbiology 2025;28(1):3-
Background:
The 16S rRNA-targeted next-generation sequencing (NGS) has been widely used as the primary tool for microbiome analysis. However, whether the sequenced microbial diversity absolutely represents the original sample composition remains unclear. This study aimed to evaluate whether 16S rRNA gene-targeted NGS accurately captures bacterial community composition.
Methods:
Mock communities were constructed using equal amounts of DNA from 18 bacterial strains in three formats: genomic DNA, recombinant plasmids, and polymerase chain reaction (PCR) templates. The V3V4 region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq.
Results:
Data regression analysis revealed that the recombinant plasmid produced more accurate and precise correlation curve than that by the gDNA and PCR products, with a slope closest to 1 (1.0082) and the highest R² value (0.9975). Despite the same input amount of bacterial DNA, the NGS read distribution varied across all three mock communities. Using multiple regression analysis, we found that the guanine-cytosine (GC) content of the V3V4 region, 16S rRNA gene, size of gDNA, and copy number of 16S rRNA were significantly associated with the NGS output of each bacterial species.
Conclusion
This study demonstrated that recombinant plasmids are the preferred option for quality control and that NGS output is biased owing to certain bacterial characteristics, such as %GC content, gDNA size, and 16S rRNA gene copy number. Further research is required to develop a system that compensates for NGS process biases using mock communities.
8.Erratum to "Potential Role of Dietary Salmon Nasal Cartilage Proteoglycan on UVB-Induced Photoaged Skin" Biomol Ther 32(2), 249-260 (2024)
Hae Ran LEE ; Seong-Min HONG ; Kyohee CHO ; Seon Hyeok KIM ; Eunji KO ; Eunyoo LEE ; Hyun Jin KIM ; Se Yeong JEON ; Seon Gil DO ; Sun Yeou KIM
Biomolecules & Therapeutics 2025;33(2):415-415
9.Rebamipide Prevents the Hemoglobin Drop Related to MucosalDamaging Agents at a Level Comparable to Proton Pump Inhibitors
Ji Eun KIM ; Yeong Chan LEE ; Tae Se KIM ; Eun Ran KIM ; Sung Noh HONG ; Young-Ho KIM ; Kyunga KIM ; Dong Kyung CHANG
Gut and Liver 2024;18(6):1026-1036
Background/Aims:
The effect of proton pump inhibitors (PPIs) on the lower gastrointestinal (GI) tract is uncertain, with potential to worsen damage. This study aimed to find the best method for protecting the entire GI tract from mucosal damage.
Methods:
A retrospective cohort study at Samsung Medical Center (2002-2019) included 195,817 patients prescribed GI mucosa-damaging agents. The primary goal was to assess the effectiveness of GI protective agents in preventing significant hemoglobin drops (>2 g/dL), indicating overall GI mucosal damage. Self-controlled case series and landmark analysis were used to address biases in real-world data.
Results:
The incidence rate ratios for rebamipide, PPI, and histamine-2 receptor antagonist (H2RA) were 0.34, 0.33, and 0.52, respectively. Rebamipide showed a significantly lower incidence rate than H2RA and was comparable to PPIs. Landmark analysis revealed significant reductions in hemoglobin drop risk with rebamipide and H2RA, but not with PPI.
Conclusions
Rebamipide, like PPIs, was highly effective in preventing blood hemoglobin level decreases, as shown in real-world data. Rebamipide could be a comprehensive strategy for protecting the entire GI tract, especially when considering PPIs' potential side effects on the lower GI tract.
10.Rebamipide Prevents the Hemoglobin Drop Related to MucosalDamaging Agents at a Level Comparable to Proton Pump Inhibitors
Ji Eun KIM ; Yeong Chan LEE ; Tae Se KIM ; Eun Ran KIM ; Sung Noh HONG ; Young-Ho KIM ; Kyunga KIM ; Dong Kyung CHANG
Gut and Liver 2024;18(6):1026-1036
Background/Aims:
The effect of proton pump inhibitors (PPIs) on the lower gastrointestinal (GI) tract is uncertain, with potential to worsen damage. This study aimed to find the best method for protecting the entire GI tract from mucosal damage.
Methods:
A retrospective cohort study at Samsung Medical Center (2002-2019) included 195,817 patients prescribed GI mucosa-damaging agents. The primary goal was to assess the effectiveness of GI protective agents in preventing significant hemoglobin drops (>2 g/dL), indicating overall GI mucosal damage. Self-controlled case series and landmark analysis were used to address biases in real-world data.
Results:
The incidence rate ratios for rebamipide, PPI, and histamine-2 receptor antagonist (H2RA) were 0.34, 0.33, and 0.52, respectively. Rebamipide showed a significantly lower incidence rate than H2RA and was comparable to PPIs. Landmark analysis revealed significant reductions in hemoglobin drop risk with rebamipide and H2RA, but not with PPI.
Conclusions
Rebamipide, like PPIs, was highly effective in preventing blood hemoglobin level decreases, as shown in real-world data. Rebamipide could be a comprehensive strategy for protecting the entire GI tract, especially when considering PPIs' potential side effects on the lower GI tract.

Result Analysis
Print
Save
E-mail