1.A case of Scleroderma-systemic lupus erythematosus overlap syndrome in a 22-year-old Filipino female
Maritess Parrone Macaraeg ; Maria Aurora Teresa H. Rosario
Journal of the Philippine Dermatological Society 2025;34(1):23-28
Overlap syndrome is a rare condition involving the coexistence of at least two distinct autoimmune diseases, such as systemic lupus erythematosus and systemic sclerosis. This condition has limited studies on epidemiology probably because it is often under-recognized. We present a 22-year-old Filipino female with a 10-month history of hyperpigmented patches on the malar surface and extremities, with associated photosensitivity, fatigue, pallor, arthralgia, and oral ulcers, and positive antinuclear antibody titer. She was treated with oral Prednisone in tapering doses, leading to clinical improvement. Eight months later, there was a recurrence of hyperpigmented patches on the face and extremities with skin tightening and diffuse hair loss, development of shiny skin with facial fold loss, a beak-like nasal appearance, and episodes of dyspnea and malaise. Consistent with scleroderma, the patient was started on mycophenolate mofetil (MMF) 500 mg daily, with close monitoring for disease progression and systemic involvement. Overlap syndrome remains under-recognized due to its variable presentation and rarity. Treatment is individualized based on the specific connective tissue diseases involved and the patient’s symptoms. Multidisciplinary care is crucial for timely management and to adjust treatment as needed, given the potential for life-threatening complications involving cutaneous and internal organs.
Human ; Female ; Young Adult: 19-24 Yrs Old ; Histopathology ; Pathology ; Lupus Erythematosus, Systemic ; Scleroderma, Systemic
2.Pathogenesis and mechanism of serine protease 23 in skin fibrosis of systemic sclerosis.
Xiandun YUAN ; Zhaohua LI ; Dan XU ; Ting LI ; Dan FANG ; Rong MU
Journal of Peking University(Health Sciences) 2025;57(5):903-910
OBJECTIVE:
It has been reported that the mRNA expression of serine protease 23 (PRSS23) was increased in skin fibroblasts from systemic sclerosis patients (SSc). The purpose of this study is to explore the pathogenetic effect and mechanism of PRSS23 in skin fibrosis of SSc.
METHODS:
The expression of PRSS23 in skin tissues from the SSc patients and healthy controls was detected by immunohisto-chemistry. Fibroblasts isolated from fresh skin tissue were used to detect the expression of PRSS23 by real-time quantitative PCR (RT-qPCR) and Western blot. Overexprssion of PRSS23 in BJ, the fibroblasts cell line of skin, was constructed by lentivirus. After stimulation with 400 μmol/L hydrogen peroxide for 12 h, Annexin V/7-AAD staining was used to detect apoptosis of fibroblasts; flow cytometry and Western blot were used to detect the expression of apoptosis-related protein cleaved Caspase-3. The expression of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) in fibroblasts was detected by RT-qPCR and enzyme linked immunosorbent assay (ELISA).
RESULTS:
Compared with the healthy controls, the expression of PRSS23 in skin tissues of the SSc patients was significantly increased [4.952 (3.806-5.439) vs. 0.806 (0.395-1.173), P < 0.001], and fibroblast was the main cell that expressed PRSS23. The mRNA [27.59 (25.02-30.00) vs. 1.00, P < 0.001] and protein [0.675 (0.587-0.837) vs. 0.451 (0.342-0.502), P=0.029] of PRSS23 in skin fibroblasts isolated from the SSc patients were significantly up-regulated. Compared with the control group, the anti-apoptotic ability of skin fibroblasts overexpressing PRSS23 was enhanced, and the proportion of apoptotic cells was significantly reduced after hydrogen peroxide induction [(5.043±1.097)% vs. (17.480±3.212)%, P=0.022], the expression of apoptosis-related protein cleaved Caspase-3 was also markedly reduced [(0.718±0.022) vs. (1.422±0.105), P=0.003]. In addition, the mRNA [(99.780±1.796) vs. (1.000±0.004), P < 0.001] and protein [(211.600±2.431) ng/L vs. (65.930±1.768) ng/L, P < 0.001] of IL-6 in the fibroblasts overexpressing PRSS23 were significantly up-regulated; the mRNA[(3.555±0.555) vs. (1.000±0.004), P < 0.001] and protein levels [(41.190±0.949) ng/L vs. (31.150±0.360) ng/L, P < 0.001] of TNF-α in the fibroblasts overexpressing PRSS23 were also significantly up-regulated.
CONCLUSION
The expression of PRSS23 is increased in skin fibroblasts of SSc patients. PRSS23 can inhibit cell apoptosis, promote the secretion of inflammatory factors such as IL-6 and TNF-α, and regulate the process that skin fibroblasts transform into pro-inflammatory type. So, PRSS23 is associated with the development of skin fibrosis.
Humans
;
Scleroderma, Systemic/enzymology*
;
Fibroblasts/pathology*
;
Apoptosis
;
Skin/metabolism*
;
Fibrosis
;
Interleukin-6/metabolism*
;
Caspase 3/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Male
;
Female
;
Cells, Cultured
;
RNA, Messenger/metabolism*
;
Middle Aged
;
Adult
;
Serine Endopeptidases/genetics*
3.Expression and significance of ferroptosis marker 4-HNE in in vitro model of systemic sclerosis.
Kelin ZHAO ; Xue XIA ; Naixu SHI ; Han ZHOU ; Jingwen GAI ; Ping LI
Journal of Peking University(Health Sciences) 2024;56(6):950-955
OBJECTIVE:
To investigate the expression and physiological significance of the ferroptosis marker 4-hydroxynonenal (4-HNE) in myofibroblasts induced by transforming growth factor-β1 (TGF-β1), providing theoretical evidence for its potential role in the diagnosis and treatment of fibrosis in systemic sclerosis (SSc).
METHODS:
Mouse embryonic fibroblasts (NIH3t3) were cultured and divided into two groups after 12 h of starvation: the control group (cultured in 1% serum-containing medium) and the TGF-β1 group (cultured in 10 μg/L TGF-β1 with 1% serum-containing medium). Cell morphology changes in both groups were observed under a microscope. To confirm successful establishment of the SSc cell model, fibrosis markers were analyzed using reverse transcription quantitative real-time PCR (RT-qPCR) and Western blot. Next, flow cytometry was employed to assess the intracellular levels of reactive oxygen species (ROS) in both groups. Finally, Western blot and immunofluorescence staining were used to measure the expression of 4-HNE in the TGF-β1-treated cells.
RESULTS:
Microscopic observations revealed that TGF-β1 treatment caused the NIH3t3 cells to transition from a typical spindle shape to a flat, polygonal shape with multiple protrusions, indicating fibroblast activation. The RT-qPCR and Western blot analyses showed that the expression of the fibrosis marker Vimentin was significantly upregulated in the TGF-β1 group compared with the control group (P < 0.01), confirming that TGF-β1 effectively promoted fibrosis-related gene and protein expression. Flow cytometry results indicated that TGF-β1 significantly elevated intracellular ROS levels, suggesting the induction of oxidative stress. Furthermore, both Western blot and immuno-fluorescence staining demonstrated a significant increase in 4-HNE expression in the TGF-β1-treated cells (immunofluorescence intensity P < 0.05).
CONCLUSION
TGF-β1 promotes fibroblast activation and fibrosis while inducing ROS production, leading to a marked increase in 4-HNE expression. Given the role of 4-HNE as a marker of lipid peroxidation and its elevated levels in the SSc cell model, this study suggests that 4-HNE could serve as a potential biomarker for fibrosis in SSc. The findings highlight the importance of investigating the mechanisms of 4-HNE in fibrosis and suggest that targeting this pathway could offer new therapeutic opportunities for treating SSc.
Animals
;
Mice
;
Scleroderma, Systemic/pathology*
;
Aldehydes/pharmacology*
;
Transforming Growth Factor beta1/metabolism*
;
NIH 3T3 Cells
;
Ferroptosis
;
Reactive Oxygen Species/metabolism*
;
Fibrosis
;
Fibroblasts/metabolism*
;
Biomarkers/metabolism*
;
Myofibroblasts/metabolism*
4.Expression of pituitary tumor-transforming gene-1 and its pathogenic role in systemic sclerosis.
Anqiao YANG ; Yan HUANG ; Yuting ZHANG ; Kai YANG ; Jiucun WANG ; Qingmei LIU
Journal of Southern Medical University 2020;40(11):1564-1570
OBJECTIVE:
To investigate the expression of tumor-transforming gene-1 (PTTG1) in systemic sclerosis (SSc) and its role in fibrosis.
METHODS:
Skin biopsy samples were collected from 21 patients with SSc and 22 patients with healthy skin for detecting the mRNA and protein expressions of PTTG1 using real-time PCR (RT-PCR) and immunohistochemistry, respectively. In cultured primary human dermal fibroblasts, PTTG1 expression was knocked down via RNA interference (siRNA), and the mRNA expression levels of PTTG1 and the fibrosis-related genes
RESULTS:
Compared with those in normal skin samples, the mRNA and protein expressions of PTTG1 increased significantly in the skin tissue of patients with SSc (
CONCLUSIONS
PTTG1 is highly expressed in skin tissues of patients with SSc, and PTTG1 knockdown can reduce the activity of the dermal fibroblasts, suggesting a close correlation of PTTG1 with fibrosis in SSc.
Cells, Cultured
;
Fibroblasts
;
Fibrosis
;
Humans
;
Scleroderma, Systemic/pathology*
;
Securin
;
Skin/pathology*
5.Preventive and therapeutic effects of safflower water extract on systemic scleroderma in mice and its mechanism.
Chun-Fang FAN ; Hong-Xia ZHANG ; Yi-Hao TANG ; Hai-Huan XU ; Dong SONG
Chinese Journal of Applied Physiology 2019;35(4):351-354
OBJECTIVE:
To study the preventive and therapeutic effects of safflower water extract on systemic scleroderma (SSc) in mice and its mechanism.
METHODS:
Sixty BALB/C mice were randomly divided into the control group, model group, prednisone group and safflower low, middle, high dose groups, 10 mice in each group.The control group was injected with normal saline, and the other five groups were subcutaneously injected with bleomycin hydrochloride with 100 μl at the concentration of 200 μg /ml on the back, once a day for 28 days to establish the SSc models.At the same time, the control group and model group were treated with normal saline (10 ml/kg), the prednisone group was treated with prednisone 4.5 mg/kg (10 ml/kg), and the low, middle, and high dose safflower groups were treated with safflower at the doses of 1.5, 3, 6 g/kg (10 ml/kg), and all groups were treated for 28 days.After 28 days, all mice were decapitated. The blood samples and back skin of the BLM injection part were collected.After that, all the tissue slices were taken to measure the dermal thickness, and the content of hydroxyproline (HYP) in the skin tissues was detected by hydrolysis method.The contents of tissue growth factor (CTGF) and transforming growth factor-β (TGF-β ) in the skin tissues and the levels of interleukin-6 (IL-6) and interleukin-17 (IL-17) in serum were determined by ELISA.
RESULTS:
Compared with the control group, the dermal thickness of the model group was increased(P<0.05), the contents of CTGF, TGF-β and HYP in the skin tissues and the levels of IL-6 and IL-17 in the serum of the model group were increased(P<0.05); compared with the model group, the dermal thickness in the prednisone group and safflower groups was decreased (P<0.05), the levels of CTGF, TGF-β and HYP in the skin tissues and the serum levels of IL-6 and IL-17 in the prednisone group and safflower groups were decreased (P<0.05).
CONCLUSION
Safflower water extract can improve skin condition (or dermal thickness) in SSc mice, and its mechanism may be related to reducing immune inflammatory response.
Animals
;
Bleomycin
;
Carthamus tinctorius
;
chemistry
;
Connective Tissue Growth Factor
;
metabolism
;
Disease Models, Animal
;
Hydroxyproline
;
analysis
;
Interleukin-17
;
metabolism
;
Interleukin-6
;
metabolism
;
Mice
;
Mice, Inbred BALB C
;
Plant Extracts
;
pharmacology
;
Random Allocation
;
Scleroderma, Systemic
;
drug therapy
;
Skin
;
pathology
;
Transforming Growth Factor beta1
;
metabolism
6.CD146: a potential therapeutic target for systemic sclerosis.
Lingling ZHANG ; Yongting LUO ; Xiao TENG ; Zhenzhen WU ; Mengtao LI ; Dong XU ; Qian WANG ; Fei WANG ; Jing FENG ; Xiaofeng ZENG ; Xiyun YAN
Protein & Cell 2018;9(12):1050-1054
7.Methods for the morphological and functional evaluation of microvascular damage in systemic sclerosis.
Barbara RUARO ; Vanessa SMITH ; Alberto SULLI ; Saskia DECUMAN ; Carmen PIZZORNI ; Maurizio CUTOLO
The Korean Journal of Internal Medicine 2015;30(1):1-5
Systemic sclerosis is a connective tissue disease characterized by alterations in microvascular structure and function. In these patients, numerous studies have demonstrated a relationship between capillary morphology and peripheral blood perfusion. Nailfold videocapillaroscopy reveals the peripheral microvascular morphology and thus allows classification and scoring of capillary abnormalities with respect to different microangiopathy patterns (early, active, and late). Laser Doppler flowmetry and laser speckle contrast analysis can be used to estimate cutaneous blood flow through microvessels and to assess and quantify blood perfusion at peripheral sites. These two methods are also used to identify changes in digital blood perfusion after the infusion of vasodilators.
Blood Flow Velocity
;
Humans
;
*Laser-Doppler Flowmetry
;
*Microcirculation
;
Microscopic Angioscopy/*methods
;
Microvessels/*pathology/*physiopathology
;
Nails
;
Predictive Value of Tests
;
Regional Blood Flow
;
Scleroderma, Systemic/*diagnosis/pathology/physiopathology
;
Skin/*blood supply
;
Vasodilator Agents/diagnostic use
;
*Video Recording
8.Promising Pharmacological Directions in the World of Lysophosphatidic Acid Signaling.
Nicole C STODDARD ; Jerold CHUN
Biomolecules & Therapeutics 2015;23(1):1-11
Lysophosphatidic acid (LPA) is a signaling lipid that binds to six known lysophosphatidic acid receptors (LPARs), named LPA1-LPA6. These receptors initiate signaling cascades relevant to development, maintenance, and healing processes throughout the body. The diversity and specificity of LPA signaling, especially in relation to cancer and autoimmune disorders, makes LPA receptor modulation an attractive target for drug development. Several LPAR-specific analogues and small molecules have been synthesized and are efficacious in attenuating pathology in disease models. To date, at least three compounds have passed phase I and phase II clinical trials for idiopathic pulmonary fibrosis and systemic sclerosis. This review focuses on the promising therapeutic directions emerging in LPA signaling toward ameliorating several diseases, including cancer, fibrosis, arthritis, hydrocephalus, and traumatic injury.
Arthritis
;
Autoimmune Diseases
;
Fibrosis
;
Hydrocephalus
;
Idiopathic Pulmonary Fibrosis
;
Pathology
;
Pharmacology
;
Receptors, Lysophosphatidic Acid
;
Scleroderma, Systemic
;
Sensitivity and Specificity
9.Involvement of collagen-binding heat shock protein 47 in scleroderma-associated fibrosis.
Haiyan CHU ; Ting WU ; Wenyu WU ; Wenzhen TU ; Shuai JIANG ; Sidi CHEN ; Yanyun MA ; Qingmei LIU ; Xiaodong ZHOU ; Li JIN ; Jiucun WANG
Protein & Cell 2015;6(8):589-598
Uncontrolled fibrosis of skin and internal organs is the main characteristic of scleroderma, and collagen is a major extracellular matrix protein that deposits in the fibrotic organs. As the chaperone of collagen, heat shock protein 47 (HSP47) is closely related with the development of fibrosis. To explore the potential function of HSP47 in the pathogenesis of scleroderma, the clinical, in vivo and in vitro studies were performed. In clinical, the increased mRNA level of HSP47 was observed in the skin fibroblasts and PBMC from scleroderma patients, and the enhanced protein level of HSP47 was also detected in the skin biopsy and plasma of the above patients. Unexpectedly, the enhanced levels of HSP47 were positively correlated with the presence of anti-centromere antibody in scleroderma patients. Moreover, a high expression of HSP47 was found in the skin lesion of BLM-induced scleroderma mouse model. Further in vitro studies demonstrated that HSP47 knockdown could block the intracellular and extracellular collagen over-productions induced by exogenous TGF-β. Therefore, the results in this study provide direct evidence that HSP47 is involved in the pathogenesis of scleroderma. The high expression of HSP47 can be detected in the circulatory system of scleroderma patients, indicating that HSP47 may become a pathological marker to assess the progression of scleroderma, and also explain the systemic fibrosis of scleroderma. Meanwhile, collagen over-expression is blocked by HSP47 knockdown, suggesting the possibility that HSP47 can be a potential therapeutic target for scleroderma.
Adolescent
;
Adult
;
Animals
;
Biopsy
;
Blotting, Western
;
Cells, Cultured
;
Collagen
;
metabolism
;
Female
;
Fibroblasts
;
drug effects
;
metabolism
;
Fibrosis
;
HSP47 Heat-Shock Proteins
;
blood
;
genetics
;
metabolism
;
Humans
;
Leukocytes, Mononuclear
;
metabolism
;
Male
;
Mice
;
Mice, Inbred C3H
;
Middle Aged
;
NIH 3T3 Cells
;
Protein Binding
;
RNA Interference
;
Reverse Transcriptase Polymerase Chain Reaction
;
Scleroderma, Systemic
;
blood
;
genetics
;
metabolism
;
Skin
;
metabolism
;
pathology
;
Transforming Growth Factor beta
;
pharmacology
;
Young Adult
10.A case of sarcoidosis with systemic sclerosis.
Xin-Xin REN ; Shao-Wei HOU ; Zheng-Feng LI ; Wei MA ; Ying LI ; Lin LIU ; Li-Min XU
Chinese Medical Journal 2013;126(22):4400-4400
Female
;
Humans
;
Middle Aged
;
Sarcoidosis
;
diagnosis
;
pathology
;
Scleroderma, Systemic
;
diagnosis
;
pathology


Result Analysis
Print
Save
E-mail