1.Radiotracer labeled thymohydroquinyl gallate capped gold nanoparticles as a theranostic radiopharmaceutical for targeted antineoplastic and bioimaging.
Munaza BATOOL ; Batool FATIMA ; Dilshad HUSSAIN ; Rubaida MAHMOOD ; Muhammad IMRAN ; Saeed AKHTER ; Muhammad Saqib KHAN ; Saadat MAJEED ; Muhammad NAJAM-UL-HAQ
Journal of Pharmaceutical Analysis 2025;15(4):100965-100965
Thymoquinone (Tq) and gallic acid (GA) are known for counter-tumorigenic characteristics. GA inhibits cancer cell proliferation by interfering with many apoptotic signaling pathways, producing more reactive oxygen species (ROS), focusing on the cell cycle, and suppressing the expression of oncogenes and matrix metalloproteinases (MMPs). In this study, thymoquinone (after reducing to thymohydroquinone) and gallic acid are esterified to form thymohydroquinyl gallate (a prodrug). Thymohydroquinyl gallate (THQG) possesses enhanced antineoplastic efficacy and targeted delivery potential. The chemical and spectroscopic analysis confirms ester synthesis. Gold nanoparticles (AuNPs) are employed as nanocarriers due to their physicochemical and optical characteristics, biocompatibility, and low toxicity. As an efficient drug transporter, gold nanoparticles (AuNPs) shield conjugated drugs from enzymatic digestion. The prodrug acts as a reducing agent for Au metal atoms and is loaded onto it after reduction. The nano drug is radiolabeled with 99mTc and 131I to monitor the drug biodistribution in animals using a gamma camera and single-photon emission computerized tomography (SPECT). 131I is an antineoplastic that helps enhance the drug's efficiency. Chromatographic results reveal promising radiolabeling percentages. In vitro, drug release shows sustained release at pH⁓5.8. In vitro 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) cytotoxicity assay reveals drug potency on CAL 27 and MCF 7 cell lines.
2.Paraplegia Following Spinal Cord Contusion from an Indirect Gunshot Injury.
Khuram KHAN ; Beatrice DIEUDONNE ; Saqib SAEED ; Sara ALOTHMAN ; Yasir SAEED ; Sanjiv GRAY
Korean Journal of Neurotrauma 2018;14(1):32-34
Spinal cord injuries are debilitating and life threatening. Paraplegia due to direct traumatic gunshot injury to the spinal cord is common. The most common cause of spinal cord injury is road traffic accidents. This is followed by spinal cord injury due to a fall from a height. Most of the spinal cord injuries due to gunshot wounds occur as a result of direct traumatic effects. We present a rare case of a 49-year-old male with trauma. He developed paraplegia after a gunshot wound injury to the neck and contusion to the spinal cord, with no direct trauma. Paraplegia due to direct gunshot injury can have many different outcomes. In our case, the patient was managed conservatively, and the outcome was favorable.
Accidents, Traffic
;
Contusions
;
Humans
;
Male
;
Middle Aged
;
Neck
;
Paraplegia*
;
Spinal Cord Injuries*
;
Spinal Cord*
;
Wounds, Gunshot

Result Analysis
Print
Save
E-mail