1.Saponins from Panax japonicus ameliorate high-fat diet-induced anxiety by modulating FGF21 resistance.
Yan HUANG ; Bo-Wen YUE ; Yue-Qin HU ; Wei-Li LI ; Dian-Mei YU ; Jie XU ; Jin-E WANG ; Zhi-Yong ZHOU
China Journal of Chinese Materia Medica 2025;50(1):29-41
Anxiety disorder is a highly prevalent psychological illness, and research has shown that obesity is a significant risk factor for its development. This study explored the ameliorative effects and mechanisms of saponins from Panax japonicus(SPJ) on anxiety disorder in mice fed a high-fat diet(HFD). Fifty C57BL/6J mice were randomly divided into normal control diet(NCD) group, HFD group, and low-and high-dose SPJ groups. At week 12, six mice from the HFD group were further divided into a control group(treated with DMSO) and an exogenous fibroblast growth factor 21(FGF21) group(administered rFGF21). The anxiety-like behavior of the mice was assessed using the open field test and elevated plus maze test. Hematoxylin-eosin(HE) staining and oil red O staining were performed to observe pathological changes in the liver and adipose tissue. Glucose metabolism was evaluated through the glucose tolerance test(GTT) and insulin tolerance test(ITT). Western blot analysis was performed to detect the expression of FGF21 and its downstream-related proteins in the liver and cortex, along with the expression of brain-derived neurotrophic factor(BDNF), disks large homolog 4(DLG4), and synaptophysin(SYP) in the cortex. Real-time quantitative fluorescent PCR(qPCR) was used to detect the expression of FGF21 and its receptor genes in the liver and cortex. Immunofluorescence staining was employed to examine the expression of neuronal activator c-Fos, FGF21, and the FGF21 co-receptor β-klotho in the cerebral cortex. The results showed that SPJ significantly improved the frequency of activity in the open arms of the elevated plus maze and the central area of the open field in HFD mice, up-regulated the expression of BDNF, DLG4, and SYP, and effectively alleviated anxiety-like behaviors in HFD mice. Compared with the NCD group, HFD mice exhibited up-regulated expression of FGF21 in the liver and cerebral cortex, while the expression of fibroblast growth factor receptor 1(FGFR1) and β-klotho was significantly down-regulated, suggesting that HFD mice exhibited FGF21 resistance. SPJ markedly up-regulated the β-klotho levels in HFD mice, reversing FGF21 resistance. Further comparison with exogenously administered FGF21 revealed that SPJ activates brain cortical regions in a consistent manner, and additionally, SPJ promotes the number and colocalization of c-Fos and β-klotho positive cells in the brain cortex. In summary, SPJ effectively alleviates anxiety-like behaviors in HFD mice. Its mechanism is associated with up-regulation of β-klotho expression in the brain, reversal of FGF21 resistance, and subsequent activation of neurons in the cerebral cortex and amygdala.
Animals
;
Diet, High-Fat/adverse effects*
;
Fibroblast Growth Factors/genetics*
;
Mice
;
Male
;
Panax/chemistry*
;
Mice, Inbred C57BL
;
Anxiety/etiology*
;
Saponins/administration & dosage*
;
Brain-Derived Neurotrophic Factor/genetics*
;
Humans
;
Liver/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
2.Saponins from Aralia taibaiensis protect against brain ischemia/reperfusion injuries by regulating the apelin/AMPK pathway.
Zhengrong LI ; Yuwen LIU ; Kedi LIU ; Xingru TAO ; Naping HU ; Wangting LI ; Jialin DUAN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(3):299-310
Aralia taibaiensi, widely distributed in western China, particularly in the Qinba Mountains, has been utilized as a folk medicine for treating diabetes, gastropathy, rheumatism, and cardiovascular diseases. Saponins from A. taibaiensis (sAT) have demonstrated protective effects against oxidative stress and mitochondrial dysfunction induced by ischemia/reperfusion (I/R). However, the underlying mechanisms remain unclear. In vivo, middle cerebral artery occlusion/reperfusion (MCAO/R) induced inflammatory infiltration, neuronal injury, cell apoptosis, mitochondrial dysfunction, and oxidative stress in the ischaemic penumbra, which were effectively mitigated by sAT. sAT increased the mRNA and protein expression levels of apelin and its receptor apelin/apelin receptors (ARs) both in vivo and in vitro. (Ala13)-Apelin-13 (F13A) and small interfering RNA (siRNA) abolished the regulatory effects of sAT on neuroprotection mediated by adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/protein kinase B (Akt). Furthermore, sAT induced apelin/AR expression by simultaneously inhibiting P38 mitogen-activated protein kinase (P38 MAPK)/activating transcription factor 4 (ATF4) and upregulating hypoxia-inducible factor-1α (HIF-1α). Our findings indicate that sAT regulates apelin/AR/AMPK by inhibiting P38 MAPK/ATF4 and upregulating HIF-1a, thereby suppressing oxidative stress and mitochondrial dysfunction.
Animals
;
Reperfusion Injury/prevention & control*
;
Aralia/chemistry*
;
Saponins/administration & dosage*
;
AMP-Activated Protein Kinases/genetics*
;
Male
;
Apelin/genetics*
;
Signal Transduction/drug effects*
;
Neuroprotective Agents/administration & dosage*
;
Brain Ischemia/genetics*
;
Rats, Sprague-Dawley
;
Rats
;
Oxidative Stress/drug effects*
;
Apelin Receptors/genetics*
;
Humans
;
Apoptosis/drug effects*
;
Mice
3.Multidrug resistance reversal effect of tenacissoside I through impeding EGFR methylation mediated by PRMT1 inhibition.
Donghui LIU ; Qian WANG ; Ruixue ZHANG ; Ruixin SU ; Jiaxin ZHANG ; Shanshan LIU ; Huiying LI ; Zhesheng CHEN ; Yan ZHANG ; Dexin KONG ; Yuling QIU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(9):1092-1103
Cancer multidrug resistance (MDR) impairs the therapeutic efficacy of various chemotherapeutics. Novel approaches, particularly the development of MDR reversal agents, are critically needed to address this challenge. This study demonstrates that tenacissoside I (TI), a compound isolated from Marsdenia tenacissima (Roxb.) Wight et Arn, traditionally used in clinical practice as an ethnic medicine for cancer treatment, exhibits significant MDR reversal effects in ABCB1-mediated MDR cancer cells. TI reversed the resistance of SW620/AD300 and KBV200 cells to doxorubicin (DOX) and paclitaxel (PAC) by downregulating ABCB1 expression and reducing ABCB1 drug transport function. Mechanistically, protein arginine methyltransferase 1 (PRMT1), whose expression correlates with poor prognosis and shows positive association with both ABCB1 and EGFR expressions in tumor tissues, was differentially expressed in TI-treated SW620/AD300 cells. SW620/AD300 and KBV200 cells exhibited elevated levels of EGFR asymmetric dimethylarginine (aDMA) and enhanced PRMT1-EGFR interaction compared to their parental cells. Moreover, TI-induced PRMT1 downregulation impaired PRMT1-mediated aDMA of EGFR, PRMT1-EGFR interaction, and EGFR downstream signaling in SW620/AD300 and KBV200 cells. These effects were significantly reversed by PRMT1 overexpression. Additionally, TI demonstrated resistance reversal to PAC in xenograft models without detectable toxicities. This study establishes TI's MDR reversal effect in ABCB1-mediated MDR human cancer cells through inhibition of PRMT1-mediated aDMA of EGFR, suggesting TI's potential as an MDR modulator for improving chemotherapy outcomes.
Humans
;
Protein-Arginine N-Methyltransferases/antagonists & inhibitors*
;
Drug Resistance, Neoplasm/drug effects*
;
ErbB Receptors/genetics*
;
Animals
;
Cell Line, Tumor
;
Drug Resistance, Multiple/drug effects*
;
Methylation/drug effects*
;
Saponins/administration & dosage*
;
Mice
;
Mice, Nude
;
Mice, Inbred BALB C
;
ATP Binding Cassette Transporter, Subfamily B/genetics*
;
Doxorubicin/pharmacology*
;
Paclitaxel/pharmacology*
;
Female
;
Repressor Proteins
4.The novel combination of astragaloside IV and formononetin protects from doxorubicin-induced cardiomyopathy by enhancing fatty acid metabolism.
Xinyue YU ; Zhaodi HAN ; Linling GUO ; Shaoqian DENG ; Jing WU ; Qingqing PAN ; Liuyi ZHONG ; Jie ZHAO ; Hui HUI ; Fengguo XU ; Zunjian ZHANG ; Yin HUANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(10):1171-1182
Astragali Radix (AR), a traditional Chinese medicine (TCM), has demonstrated therapeutic efficacy against various diseases, including cardiovascular conditions, over centuries of use. While doxorubicin serves as an effective chemotherapeutic agent against multiple cancers, its clinical application remains constrained by significant cardiotoxicity. Research has indicated that AR exhibits protective properties against doxorubicin-induced cardiomyopathy (DIC); however, the specific bioactive components and underlying mechanisms responsible for this therapeutic effect remain incompletely understood. This investigation seeks to identify the protective bioactive components in AR against DIC and elucidate their mechanisms of action. Through network medicine analysis, astragaloside IV (AsIV) and formononetin (FMT) were identified as potential cardioprotective agents from 129 AR components. In vitro experiments using H9c2 rat cardiomyocytes revealed that the AsIV-FMT combination (AFC) effectively reduced doxorubicin-induced cell death in a dose-dependent manner, with optimal efficacy at a 1∶2 ratio. In vivo, AFC enhanced survival rates and improved cardiac function in both acute and chronic DIC mouse models. Additionally, AFC demonstrated cardiac protection while maintaining doxorubicin's anti-cancer efficacy in a breast cancer mouse model. Lipidomic and metabolomics analyses revealed that AFC normalized doxorubicin-induced lipid profile alterations, particularly by reducing fatty acid accumulation. Gene knockdown studies and inhibitor experiments in H9c2 cells demonstrated that AsIV and FMT upregulated peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α) and PPARα, respectively, two key proteins involved in fatty acid metabolism. This research establishes AFC as a promising therapeutic approach for DIC, highlighting the significance of multi-target therapies derived from natural herbals in contemporary medicine.
Animals
;
Doxorubicin/adverse effects*
;
Saponins/administration & dosage*
;
Isoflavones/pharmacology*
;
Rats
;
Cardiomyopathies/prevention & control*
;
Mice
;
Fatty Acids/metabolism*
;
Myocytes, Cardiac/metabolism*
;
Triterpenes/administration & dosage*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Cardiotonic Agents/administration & dosage*
;
Mice, Inbred C57BL
;
Cell Line
;
Astragalus Plant/chemistry*
;
Astragalus propinquus
5.Simultaneous determination and pharmacokinetic study of five compounds from total extract of Clinopodium chinense in abnormal uterine bleeding rat plasma by UPLC-MS/MS.
Li-Li LI ; Qi HUANG ; Jia-Jia QI ; Min YAO ; Dai-Yin PENG
China Journal of Chinese Materia Medica 2022;47(18):5071-5078
Clinopodium chinense, a traditional folk medicinal herb, has been used to treat abnormal uterine bleeding(AUB) for many years. Saponins and flavonoids are the main active components in C. chinense. To study the pharmacokine-tics of multiple components from the total extract of C. chinense(TEC), we established a sensitive and rapid method of ultra-perfor-mance liquid chromatography coupled with tandem mass spectrometry(UPLC-MS/MS) for simultaneous determination of five compounds in the plasma of AUB rats. After validation, the AUB model was established with SD female rats which got pregnant on the same day by gavage with mifepristone(12.4 mg·kg~(-1)) and misoprostol(130 μg·kg~(-1)). The established method was applied to the detection of hesperidin, naringenin, apigenin, saikosaponin a, and buddlejasaponin Ⅳb in AUB rats after the administration of TEC. The pharmacokinetic parameters were calculated by DAS 2.0. The five compounds showed good linear relationship within the detection range. The specificity, accuracy, precision, recovery, matrix effect, and stability of the method all matched the requirements of biolo-gical sample detection. The above 5 compounds were detected in the plasma of AUB rats after the administration of TEC. The C_(max) va-lues of hesperidin, naringenin, apigenin, saikosaponin a, and clinoposide A were 701.6, 429.5, 860.7, 75.1, and 304.1 ng·mL~(-1), respectively. All the compounds owned short half-life and quick elimination rate in vivo, and the large apparent volume of distribution indicated that they were widely distributed in tissues. Being rapid, accurate, and sensitive, this method is suitable for the pharmacokinetic study of extracts of Chinese herbal medicines and provides a reference for the study of pharmacodynamic material basis of C. chinense in treating AUB.
Administration, Oral
;
Animals
;
Apigenin/analysis*
;
Chromatography, High Pressure Liquid/methods*
;
Chromatography, Liquid
;
Drugs, Chinese Herbal/chemistry*
;
Female
;
Flavonoids/analysis*
;
Hesperidin
;
Lamiaceae
;
Mifepristone
;
Misoprostol
;
Oleanolic Acid/analogs & derivatives*
;
Plant Extracts/chemistry*
;
Rats
;
Saponins
;
Tandem Mass Spectrometry/methods*
;
Uterine Hemorrhage
6.Comprehensive profiling and characterization of the absorbed components and metabolites in mice serum and tissues following oral administration of Qing-Fei-Pai-Du decoction by UHPLC-Q-Exactive-Orbitrap HRMS.
Wei LIU ; Jian HUANG ; Feng ZHANG ; Cong-Cong ZHANG ; Rong-Sheng LI ; Yong-Li WANG ; Chao-Ran WANG ; Xin-Miao LIANG ; Wei-Dong ZHANG ; Ling YANG ; Ping LIU ; Guang-Bo GE
Chinese Journal of Natural Medicines (English Ed.) 2021;19(4):305-320
Qing-Fei-Pai-Du decoction (QFPDD) is a Chinese medicine compound formula recommended for combating corona virus disease 2019 (COVID-19) by National Health Commission of the People's Republic of China. The latest clinical study showed that early treatment with QFPDD was associated with favorable outcomes for patient recovery, viral shedding, hospital stay, and course of the disease. However, the effective constituents of QFPDD remain unclear. In this study, an UHPLC-Q-Orbitrap HRMS based method was developed to identify the chemical constituents in QFPDD and the absorbed prototypes as well as the metabolites in mice serum and tissues following oral administration of QFPDD. A total of 405 chemicals, including 40 kinds of alkaloids, 162 kinds of flavonoids, 44 kinds of organic acids, 71 kinds of triterpene saponins and 88 kinds of other compounds in the water extract of QFPDD were tentatively identified via comparison with the retention times and MS/MS spectra of the standards or refereed by literature. With the help of the standards and in vitro metabolites, 195 chemical components (including 104 prototypes and 91 metabolites) were identified in mice serum after oral administration of QFPDD. In addition, 165, 177, 112, 120, 44, 53 constituents were identified in the lung, liver, heart, kidney, brain, and spleen of QFPDD-treated mice, respectively. These findings provided key information and guidance for further investigation on the pharmacologically active substances and clinical applications of QFPDD.
Administration, Oral
;
Alkaloids/analysis*
;
Animals
;
COVID-19
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal/pharmacokinetics*
;
Flavonoids/analysis*
;
Mice
;
SARS-CoV-2
;
Saponins/analysis*
;
Triterpenes/analysis*
7.Quantification of Panax notoginseng saponins metabolites in rat plasma with in vivo gut microbiota-mediated biotransformation by HPLC-MS/MS.
Yin-Ping GUO ; Man-Yun CHEN ; Li SHAO ; Wei ZHANG ; Tai RAO ; Hong-Hao ZHOU ; Wei-Hua HUANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(3):231-240
Panax notoginseng saponins (PNS) are the major components of Panax notoginseng, with multiple pharmacological activities but poor oral bioavailability. PNS could be metabolized by gut microbiota in vitro, while the exact role of gut microbiota of PNS metabolism in vivo remains poorly understood. In this study, pseudo germ-free rat models were constructed by using broad-spectrum antibiotics to validate the gut microbiota-mediated transformation of PNS in vivo. Moreover, a high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was developed for quantitative analysis of four metabolites of PNS, including ginsenoside F1 (GF1), ginsenoside Rh2 (GRh2), ginsenoside compound K (GCK) and protopanaxatriol (PPT). The results showed that the four metabolites could be detected in the control rat plasma, while they could not be determined in pseudo germ-free rat plasma. The results implied that PNS could not be biotransformed effectively when gut microbiota was disrupted. In conclusion, gut microbiota plays an important role in biotransformation of PNS into metabolites in vivo.
Animals
;
Anti-Bacterial Agents
;
pharmacology
;
Biotransformation
;
Chromatography, High Pressure Liquid
;
Feces
;
microbiology
;
Gastrointestinal Microbiome
;
drug effects
;
physiology
;
Ginsenosides
;
blood
;
Male
;
Panax notoginseng
;
chemistry
;
Rats, Sprague-Dawley
;
Sapogenins
;
blood
;
Saponins
;
administration & dosage
;
metabolism
;
Tandem Mass Spectrometry
8.Buyang Huanwu Decoction ameliorates ischemic stroke by modulating multiple targets with multiple components: In vitro evidences.
Wei-Wei ZHANG ; Feng XU ; Ding WANG ; Jia YE ; Shao-Qing CAI
Chinese Journal of Natural Medicines (English Ed.) 2018;16(3):194-202
Buyang Huanwu Decoction (BYHWD) is a well-known traditional Chinese medicine prescription which is used to treat ischaemic stroke and stroke-induced disabilities. However, the exact mechanism underlying BYHWD's amelioration of ischaemic stroke and its effective constituents remain unclear. The present study aimed to identify the effective constituents of BYHWD and to further explore its action mechanisms in the amelioration of ischaemic stroke by testing the activities of 15 absorbable chemical constituents of BYHWD with the same methods under the same conditions. The following actions of these 15 compounds were revealed: 1) Ferulic acid, calycosin, formononetin, astrapterocarpan-3-O-β-D-glucoside, paeonol, calycosin-7-O-β-D-glucoside, astraisoflavan-7-O-β-D-glucoside, ligustrazine, and propyl gallate significantly suppressed concanavalin A (Con A)-induced T lymphocyte proliferation; 2) Propyl gallate, calycosin-7-O-β-D-glucoside, paeonol, and ferulic acid markedly inhibited LPS-induced apoptosis in RAW264.7 cells; 3) Propyl gallate and formononetin significantly inhibited LPS-induced NO release; 4) Hydroxysafflor yellow A and inosine protected PC12 cells against the injuries caused by glutamate; and 5) Formononetin, astragaloside IV, astraisoflavan-7-O-β-D-glucoside, inosine, paeoniflorin, ononin, paeonol, propyl gallate, ligustrazine, and ferulic acid significantly suppressed the constriction of the thoracic aorta induced by KCl in rats. In conclusion, the results from the present study suggest that BYHWD exerts its ischaemic stroke ameliorating activities by modulating multiple targets with multiple components.
Animals
;
Apoptosis
;
drug effects
;
Brain Ischemia
;
drug therapy
;
physiopathology
;
Drugs, Chinese Herbal
;
administration & dosage
;
chemistry
;
Glucosides
;
administration & dosage
;
analysis
;
Isoflavones
;
administration & dosage
;
analysis
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Monoterpenes
;
administration & dosage
;
analysis
;
PC12 Cells
;
RAW 264.7 Cells
;
Rats
;
Rats, Sprague-Dawley
;
Saponins
;
administration & dosage
;
analysis
;
Stroke
;
drug therapy
;
physiopathology
;
Triterpenes
;
administration & dosage
;
analysis
9.Hepatotoxicity and nephrotoxicity of saponin-enriched extract of Asparagus cochinchinensis in ICR mice.
Ji Eun SUNG ; Jun Young CHOI ; Ji Eun KIM ; Hyun Ah LEE ; Woo Bin YUN ; Jin Ju PARK ; Hye Ryeong KIM ; Bo Ram SONG ; Dong Seob KIM ; Chung Yeoul LEE ; Hee Seob LEE ; Yong LIM ; Dae Youn HWANG
Laboratory Animal Research 2017;33(2):57-67
The inhibitory effects of Asparagus cochinchinensis against inflammatory response induced by lipopolysaccharide (LPS), substance P and phthalic anhydride (PA) treatment were recently reported for some cell lines and animal models. To evaluate the hepatotoxicity and nephrotoxicity of A. cochinchinensis toward the livers and kidneys of ICR mice, alterations in related markers including body weight, organ weight, urine composition, liver pathology and kidney pathology were analyzed in male and female ICR mice after oral administration of 150, 300 and 600 mg/kg body weight/day saponin-enriched extract of A. cochinchinensis (SEAC) for 14 days. The saponin, total flavonoid and total phenol levels were found to be 57.2, 88.5 and 102.1 mg/g in SEAC, respectively, and the scavenging activity of SEAC gradually increased in a dose-dependent manner. Moreover, body and organ weight, clinical phenotypes, urine parameters and mice mortality did not differ between the vehicle and SEAC treated group. Furthermore, no significant alterations were measured in alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), blood urea nitrogen (BUN) and the serum creatinine (Cr) in the SEAC treated group relative to the vehicle treated group. Moreover, the specific pathological features induced by most toxic compounds were not observed upon liver and kidney histological analysis. Overall, the results of the present study suggest that SEAC does not induce any specific toxicity in the livers and kidneys of male and female ICR mice at doses of 600 mg/kg body weight/day.
Administration, Oral
;
Alanine Transaminase
;
Alkaline Phosphatase
;
Animals
;
Aspartate Aminotransferases
;
Blood Urea Nitrogen
;
Body Weight
;
Cell Line
;
Creatinine
;
Female
;
Humans
;
Kidney
;
L-Lactate Dehydrogenase
;
Liver
;
Male
;
Mice
;
Mice, Inbred ICR*
;
Models, Animal
;
Mortality
;
Organ Size
;
Pathology
;
Phenol
;
Phenotype
;
Saponins
;
Substance P
10.Pharmacokinetics and correlation between in vitro release and in vivo absorption of bio-adhesive pellets of panax notoginseng saponins.
Ying LI ; Yun ZHANG ; Chun-Yan ZHU
Chinese Journal of Natural Medicines (English Ed.) 2017;15(2):142-151
The present study was designed to prepare and compare bio-adhesive pellets of panax notoginseng saponins (PNS) with hydroxy propyl methyl cellulose (HPMC), chitosan, and chitosan : carbomer, explore the influence of different bio-adhesive materials on pharmacokinetics behaviors of PNSbio-adhesive pellets, and evaluate the correlation between in vivo absorption and in vitro release (IVIVC). In order to predict the in vivo concentration-time profile by the in vitro release data of bio-adhesive pellets, the release experiment was performed using the rotating basket method in pH 6.8 phosphate buffer. The PNS concentrations in rat plasma were analyzed by HPLC-MS-MS method and the relative bioavailability and other pharmacokinetic parameters were estimated using Kinetica4.4 pharmacokinetic software. Numerical deconvolution method was used to evaluate IVIVC. Our results indicated that, compared with ordinary pellets, PNS bio-adhesive pellets showed increased oral bioavailability by 1.45 to 3.20 times, increased C, and extended MRT. What's more, the release behavior of drug in HPMC pellets was shown to follow a Fickian diffusion mechanism, a synergetic function of diffusion and skeleton corrosion. The in vitro release and the in vivo biological activity had a good correlation, demonstrating that the PNS bio-adhesive pellets had a better sustained release. Numerical deconvolution technique showed the advantage in evaluation of IVIVC for self-designed bio-adhesive pellets with HPMC. In conclusion, the in vitro release data of bio-adhesive pellets with HPMC can predict its concentration-time profile in vivo.
Acrylic Resins
;
Adhesives
;
Animals
;
Chitosan
;
Drug Carriers
;
Drug Liberation
;
In Vitro Techniques
;
Intestinal Absorption
;
Male
;
Methylcellulose
;
Panax notoginseng
;
chemistry
;
Plant Extracts
;
administration & dosage
;
metabolism
;
pharmacokinetics
;
Rats, Sprague-Dawley
;
Saponins
;
administration & dosage
;
metabolism
;
pharmacokinetics

Result Analysis
Print
Save
E-mail