1.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
2.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
3.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
4.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
5.Clinical and Radiologic Predictors of Response to Atezolizumab-Bevacizumab in Advanced Hepatocellular Carcinoma
Se Jin CHOI ; Sung Won CHUNG ; Jonggi CHOI ; Kang Mo KIM ; Hyung-Don KIM ; Changhoon YOO ; Baek-Yeol RYOO ; Seung Soo LEE ; Won-Mook CHOI ; Sang Hyun CHOI
Cancer Research and Treatment 2024;56(4):1219-1230
Purpose:
This study aimed to identify clinical and radiologic characteristics that could predict response to atezolizumab-bevacizumab combination therapy in patients with advanced hepatocellular carcinoma (HCC).
Materials and Methods:
This single-center retrospective study included 108 advanced HCC patients with intrahepatic lesions who were treated with atezolizumab-bevacizumab. Two radiologists independently analyzed imaging characteristics of the index tumor on pretreatment computed tomography. Predictive factors associated with progressive disease (PD) at the best response based on Response Evaluation Criteria in Solid Tumors, ver. 1.1 were evaluated using logistic regression analysis. Progression-free survival (PFS) was estimated by the Kaplan-Meier method and compared with the log-rank test.
Results:
Of 108 patients with a median PFS of 15 weeks, 40 (37.0%) had PD during treatment. Factors associated with PD included the presence of extrahepatic metastases (adjusted odds ratio [aOR], 4.13; 95% confidence interval [CI], 1.19 to 14.35; p=0.03), the infiltrative appearance of the tumor (aOR, 3.07; 95% CI, 1.05 to 8.93; p=0.04), and the absence of arterial-phase hyperenhancement (APHE) (aOR, 6.34; 95% CI, 2.18 to 18.47; p < 0.001). Patients with two or more of these factors had a PD of 66.7% and a median PFS of 8 weeks, indicating a significantly worse outcome compared to the patients with one or no of these factors.
Conclusion
In patients with advanced HCC treated with atezolizumab-bevacizumab treatment, the absence of APHE, infiltrative appearance of the intrahepatic tumor, and presence of extrahepatic metastases were associated with poor response and survival. Evaluation of early response may be necessary in patients with these factors.
6.Subclassification of advanced-stage hepatocellular carcinoma with macrovascular invasion: combined transarterial chemoembolization and radiotherapy as an alternative first-line treatment
Sujin JIN ; Won-Mook CHOI ; Ju Hyun SHIM ; Danbi LEE ; Kang Mo KIM ; Young-Suk LIM ; Han Chu LEE ; Jinhong JUNG ; Sang Min YOON ; Jonggi CHOI
Journal of Liver Cancer 2023;23(1):177-188
Background:
/Aim: The Barcelona Clinic Liver Cancer (BCLC) guidelines recommend systemic therapy as the only first-line treatment for patients with BCLC stage C hepatocellular carcinoma (HCC) despite its heterogeneity of disease extent. We aimed to identify patients who might benefit from combined transarterial chemoembolization (TACE) and radiation therapy (RT) by subclassifying BCLC stage C.
Methods:
A total of 1,419 treatment-naïve BCLC stage C patients with macrovascular invasion (MVI) who were treated with combined TACE and RT (n=1,115) or systemic treatment (n=304) were analyzed. The primary outcome was overall survival (OS). Factors associated with OS were identified and assigned points by the Cox model. The patients were subclassified into three groups based on these points.
Results:
The mean age was 55.4 years, and 87.8% were male. The median OS was 8.3 months. Multivariate analysis revealed a significant association of Child-Pugh B, infiltrative-type tumor or tumor size ≥10 cm, main or bilateral portal vein invasion, and extrahepatic metastasis with poor OS. The sub-classification was categorized into low (point ≤1), intermediate (point=2), and high (point ≥3) risks based on the sum of points (range, 0–4). The OS in the low, intermediate, and high-risk groups was 22.6, 8.2, and 3.8 months, respectively. In the low and intermediate-risk groups, patients treated with combined TACE and RT exhibited significantly longer OS (24.2 and 9.5 months, respectively) than those who received systemic treatment (6.4 and 5.1 months, respectively; P<0.0001).
Conclusions
Combined TACE and RT may be considered as a first-line treatment option for HCC patients with MVI when classified into low- and intermediate-risk groups.
7.Conformation-specific Antibodies Targeting Aggregated Forms of α-synuclein Block the Propagation of Synucleinopathy
Minsun CHOI ; Tae-kyung KIM ; Jinhyung AHN ; Jun Sung LEE ; Byung Chul JUNG ; Sungwon AN ; Dongin KIM ; Min Jae LEE ; Inhee MOOK-JUNG ; Sang Hoon LEE ; Seung-Jae LEE
Experimental Neurobiology 2022;31(1):29-41
Abnormal aggregation of α-synuclein is a key element in the pathogenesis of several neurodegenerative diseases, including Parkinson’s disease (PD), dementia with Lewy bodies, and multiple system atrophy. α-synuclein aggregation spreads through various brain regions during the course of disease progression, a propagation that is thought to be mediated by the secretion and subsequent uptake of extracellular α-synuclein aggregates between neuronal cells. Thus, aggregated forms of this protein have emerged as promising targets for disease-modifying therapy for PD and related diseases. Here, we generated and characterized conformation-specific antibodies that preferentially recognize aggregated forms of α-synuclein. These antibodies promoted phagocytosis of extracellular α-synuclein aggregates by microglial cells and interfered with cell-to-cell propagation of α-synuclein. In an α-synuclein transgenic model, passive immunization with aggregate-specific antibodies significantly ameliorated pathological phenotypes, reducing α-synuclein aggregation, gliosis, inflammation, and neuronal loss. These results suggest that conformation-specific antibodies targeting α-synuclein aggregates are promising therapeutic agents for PD and related synucleinopathies.
8.Efficacy and Safety of Omega-3 Fatty Acids in Patients Treated with Statins for Residual Hypertriglyceridemia: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial
Ji Eun JUN ; In Kyung JEONG ; Jae Myung YU ; Sung Rae KIM ; In Kye LEE ; Kyung Ah HAN ; Sung Hee CHOI ; Soo Kyung KIM ; Hyeong Kyu PARK ; Ji Oh MOK ; Yong ho LEE ; Hyuk Sang KWON ; So Hun KIM ; Ho Cheol KANG ; Sang Ah LEE ; Chang Beom LEE ; Kyung Mook CHOI ; Sung Ho HER ; Won Yong SHIN ; Mi Seung SHIN ; Hyo Suk AHN ; Seung Ho KANG ; Jin Man CHO ; Sang Ho JO ; Tae Joon CHA ; Seok Yeon KIM ; Kyung Heon WON ; Dong Bin KIM ; Jae Hyuk LEE ; Moon Kyu LEE
Diabetes & Metabolism Journal 2020;44(1):78-90
BACKGROUND:
Cardiovascular risk remains increased despite optimal low density lipoprotein cholesterol (LDL-C) level induced by intensive statin therapy. Therefore, recent guidelines recommend non-high density lipoprotein cholesterol (non-HDL-C) as a secondary target for preventing cardiovascular events. The aim of this study was to assess the efficacy and tolerability of omega-3 fatty acids (OM3-FAs) in combination with atorvastatin compared to atorvastatin alone in patients with mixed dyslipidemia.
METHODS:
This randomized, double-blind, placebo-controlled, parallel-group, and phase III multicenter study included adults with fasting triglyceride (TG) levels ≥200 and <500 mg/dL and LDL-C levels <110 mg/dL. Eligible subjects were randomized to ATOMEGA (OM3-FAs 4,000 mg plus atorvastatin calcium 20 mg) or atorvastatin 20 mg plus placebo groups. The primary efficacy endpoints were the percent changes in TG and non-HDL-C levels from baseline at the end of treatment.
RESULTS:
After 8 weeks of treatment, the percent changes from baseline in TG (−29.8% vs. 3.6%, P<0.001) and non-HDL-C (−10.1% vs. 4.9%, P<0.001) levels were significantly greater in the ATOMEGA group (n=97) than in the atorvastatin group (n=103). Moreover, the proportion of total subjects reaching TG target of <200 mg/dL in the ATOMEGA group was significantly higher than that in the atorvastatin group (62.9% vs. 22.3%, P<0.001). The incidence of adverse events did not differ between the two groups.
CONCLUSION
The addition of OM3-FAs to atorvastatin improved TG and non-HDL-C levels to a significant extent compared to atorvastatin alone in subjects with residual hypertriglyceridemia.
9.Achievement of LDL-C Targets Defined by ESC/EAS (2011) Guidelines in Risk-Stratified Korean Patients with Dyslipidemia Receiving Lipid-Modifying Treatments
Ye Seul YANG ; Seo Young LEE ; Jung-Sun KIM ; Kyung Mook CHOI ; Kang Wook LEE ; Sang-Chol LEE ; Jung Rae CHO ; Seung-Jin OH ; Ji-Hyun KIM ; Sung Hee CHOI
Endocrinology and Metabolism 2020;35(2):367-376
Background:
This study assessed the proportion of risk-stratified Korean patients with dyslipidemia achieving their low-density lipoprotein cholesterol (LDL-C) targets as defined by the European Society of Cardiology/European Atherosclerosis Society (ESC/EAS) (2011) guidelines while receiving lipid-modifying treatments (LMTs).
Methods:
In this multicenter, cross-sectional, observational study, we evaluated data from Korean patients aged ≥19 years who were receiving LMTs for ≥3 months and had an LDL-C value within the previous 12 months on the same LMT. Data were collected for demographics, cardiovascular (CV) risk factors, medical history, and healthcare consumption. Patients were risk-stratified according to the ESC Systematic COronary Risk Evaluation (SCORE) chart and LDL-C target achievement rate was assessed.
Results:
Guideline-based risk-stratification of the 1,034 patients showed the majority (72.2%) to be in the very high-risk category. Investigators’ assessment of risk was underestimated in 71.6% compared to ESC/EAS guidelines. Overall LDL-C target achievement rate was 44.3%; target achievement was the highest (66.0%) in moderate-risk patients and the lowest (39.0%) in very high-risk patients. Overall 97.1% patients were receiving statin therapy, mostly as a single-agent (89.2%). High-intensity statins and the highest permissible dose of high-intensity statins had been prescribed to only 9.1% and 7.3% patients in the very high-risk group, respectively. Physician satisfaction with patients’ LDL-C levels was the primary reason for non-intensification of statin therapy.
Conclusion
Achievement of target LDL-C level is suboptimal in Korean patients with dyslipidemia, especially in those at very high-risk of CV events. Current practices in LMTs need to be improved based on precise CV risk evaluation posed by dyslipidemia.
10.Short-Term Effects of Beraprost Sodium on the Markers for Cardiovascular Risk Prediction in Type 2 Diabetic Patients with Microalbuminuria
Yun Mi CHOI ; Hyuk Sang KWON ; Kyung Mook CHOI ; Won Young LEE ; Eun Gyoung HONG
Endocrinology and Metabolism 2019;34(4):398-405
BACKGROUND: To evaluate the changes in cardiovascular risk markers including pulse wave velocity (PWV), microalbuminuria, inflammatory cytokines, and adhesion molecules after treatment with beraprost sodium (BPS) in patients with diabetic nephropathy.METHODS: This was a multicenter, prospective, randomized, double-blind, placebo-controlled trial. Type 2 diabetes mellitus patients with microalbuminuria were included. The primary endpoints were changes in microalbuminuria in spot urine and PWV after BPS or placebo (PCB) treatment for 24 weeks. The secondary endpoints were changes in clinical and metabolic parameters.RESULTS: A total of 52 patients completed the 24-week trial. Changes in PWV were not different significantly in the BPS and PCB groups (right, P=0.16; left, P=0.11). Changes in microalbuminuria were 14.2±157.0 and 34.5±146.6 (µg/mg Cr) in the BPS and PCB groups, respectively (P=0.63). Subgroup analysis in the high blood pressure (BP) group (baseline systolic BP >120 mm Hg and diastolic BP >80 mm Hg), showed that microalbuminuria decreased by −47.6 in the BPS group compared with an increase by 116.4 (µg/mg Cr) in the PCB group (P=0.04). Also, in the large waist circumference group (>95 cm), microalbuminuria decreased significantly in the BPS group (P=0.04).CONCLUSION: Short-term treatment of BPS for patients with diabetic nephropathy did not show significant improvement in various cardiovascular risk factors. However, BPS significantly decreased microalbuminuria in study subjects with higher cardiovascular risk such as high BP or large waist circumference.
Cytokines
;
Diabetes Mellitus, Type 2
;
Diabetic Nephropathies
;
Humans
;
Hypertension
;
Prospective Studies
;
Pulse Wave Analysis
;
Risk Factors
;
Sodium
;
Vascular Stiffness
;
Waist Circumference

Result Analysis
Print
Save
E-mail