1.Use of Pulmonary Rehabilitation for Lung Cancer Patients in Korea:Analysis of the National Health Insurance Service Database
Sang Hun KIM ; Cho Hui HONG ; Jong-Hwa JEONG ; Jinmi KIM ; Jeong Su CHO ; Jin A YOON ; Jung Seop EOM ; Byeong Ju LEE ; Myung Hun JANG ; Myung-Jun SHIN ; Yong Beom SHIN
Journal of Korean Medical Science 2025;40(17):e150-
This study aimed to assess the utilization trends of pulmonary rehabilitation (PR) among lung cancer patients in Korea using the National Health Insurance Service (NHIS) database (2017 to 2021). PR was introduced and covered under the NHIS in 2016, primarily for chronic obstructive pulmonary disease, but recent evidence suggests its benefits for lung cancer patients. Data extraction was based on Korea Informative Classification of Diseases 8th revision codes C33 and C34, with PR prescriptions identified by codes MM440 and MM290.Descriptive statistical analysis was performed, and propensity score matching was used for comparison between PR and non-PR groups. Results showed a significant increase in PR utilization, with the number of patients receiving PR (MM440) rising from 1,002 in 2017 to 3,723 in 2021, indicating a 3.7-fold increase. However, the proportion of patients receiving PR remained low at 2.9% in 2021. Enhanced access to PR services and improved evaluation strategies are essential for optimizing patient outcomes.
2.Levels of exposure markers among residents in environmentally vulnerable areas in Korea, the general population in Korea, and Asians in the United States
Kyung-Hwa CHOI ; Dahee HAN ; Sang-Yong EOM ; Yong Min CHO ; Young-Seoub HONG ; Woo Jin KIM
Epidemiology and Health 2025;47(1):e2025007-
This study compares biomarker levels among environmentally vulnerable residents in Korea, the general Korean population, and Asians in the United States. We selected 953 exposed residents and 204 controls from the Forensic Research via Omics Markers in Environmental Health Vulnerable Areas (FROM) study (2021-2023), 4,239 participants from the fourth Korean National Environmental Health Survey (2018-2020), and 996 Asians from the U.S. National Health and Nutrition Examination Survey (2017-March 2020). The analyzed biomarkers included blood and urinary metals, urinary metabolites of polycyclic aromatic hydrocarbons, nicotine, volatile organic compounds, and serum perfluorocarbon metabolites. The highest median biomarker levels varied by pollution source among older adults. In refineries, blood lead and cadmium (Cd), as well as urinary Cd and 2-hydroxyfluorene, were highest. Abandoned metal mines exhibited the highest blood and urinary mercury, urinary Cd, total arsenic (As), 2-naphthol, and cotinine levels. Coal-fired power plants showed the highest urinary 1- hydroxyphenanthrene levels, while cement factories had the highest urinary As3+ levels. Sprawls demonstrated the highest urinary monomethylarsonic acid, 1-hydroxypyrene, and phenylglyoxylic acid levels, and industrial areas recorded the highest levels of trans, trans-muconic acid, benzylmercapturic acid, and 2-methylhippuric acid. In general, biomarker levels were higher among exposed residents in the FROM study than in the general population; however, urinary 2-hydroxyfluorene and As5+ levels did not differ significantly. Exposure to pollution sources in environmentally vulnerable areas may elevate biomarker levels in residents.
3.Use of Pulmonary Rehabilitation for Lung Cancer Patients in Korea:Analysis of the National Health Insurance Service Database
Sang Hun KIM ; Cho Hui HONG ; Jong-Hwa JEONG ; Jinmi KIM ; Jeong Su CHO ; Jin A YOON ; Jung Seop EOM ; Byeong Ju LEE ; Myung Hun JANG ; Myung-Jun SHIN ; Yong Beom SHIN
Journal of Korean Medical Science 2025;40(17):e150-
This study aimed to assess the utilization trends of pulmonary rehabilitation (PR) among lung cancer patients in Korea using the National Health Insurance Service (NHIS) database (2017 to 2021). PR was introduced and covered under the NHIS in 2016, primarily for chronic obstructive pulmonary disease, but recent evidence suggests its benefits for lung cancer patients. Data extraction was based on Korea Informative Classification of Diseases 8th revision codes C33 and C34, with PR prescriptions identified by codes MM440 and MM290.Descriptive statistical analysis was performed, and propensity score matching was used for comparison between PR and non-PR groups. Results showed a significant increase in PR utilization, with the number of patients receiving PR (MM440) rising from 1,002 in 2017 to 3,723 in 2021, indicating a 3.7-fold increase. However, the proportion of patients receiving PR remained low at 2.9% in 2021. Enhanced access to PR services and improved evaluation strategies are essential for optimizing patient outcomes.
4.Use of Pulmonary Rehabilitation for Lung Cancer Patients in Korea:Analysis of the National Health Insurance Service Database
Sang Hun KIM ; Cho Hui HONG ; Jong-Hwa JEONG ; Jinmi KIM ; Jeong Su CHO ; Jin A YOON ; Jung Seop EOM ; Byeong Ju LEE ; Myung Hun JANG ; Myung-Jun SHIN ; Yong Beom SHIN
Journal of Korean Medical Science 2025;40(17):e150-
This study aimed to assess the utilization trends of pulmonary rehabilitation (PR) among lung cancer patients in Korea using the National Health Insurance Service (NHIS) database (2017 to 2021). PR was introduced and covered under the NHIS in 2016, primarily for chronic obstructive pulmonary disease, but recent evidence suggests its benefits for lung cancer patients. Data extraction was based on Korea Informative Classification of Diseases 8th revision codes C33 and C34, with PR prescriptions identified by codes MM440 and MM290.Descriptive statistical analysis was performed, and propensity score matching was used for comparison between PR and non-PR groups. Results showed a significant increase in PR utilization, with the number of patients receiving PR (MM440) rising from 1,002 in 2017 to 3,723 in 2021, indicating a 3.7-fold increase. However, the proportion of patients receiving PR remained low at 2.9% in 2021. Enhanced access to PR services and improved evaluation strategies are essential for optimizing patient outcomes.
5.Use of Pulmonary Rehabilitation for Lung Cancer Patients in Korea:Analysis of the National Health Insurance Service Database
Sang Hun KIM ; Cho Hui HONG ; Jong-Hwa JEONG ; Jinmi KIM ; Jeong Su CHO ; Jin A YOON ; Jung Seop EOM ; Byeong Ju LEE ; Myung Hun JANG ; Myung-Jun SHIN ; Yong Beom SHIN
Journal of Korean Medical Science 2025;40(17):e150-
This study aimed to assess the utilization trends of pulmonary rehabilitation (PR) among lung cancer patients in Korea using the National Health Insurance Service (NHIS) database (2017 to 2021). PR was introduced and covered under the NHIS in 2016, primarily for chronic obstructive pulmonary disease, but recent evidence suggests its benefits for lung cancer patients. Data extraction was based on Korea Informative Classification of Diseases 8th revision codes C33 and C34, with PR prescriptions identified by codes MM440 and MM290.Descriptive statistical analysis was performed, and propensity score matching was used for comparison between PR and non-PR groups. Results showed a significant increase in PR utilization, with the number of patients receiving PR (MM440) rising from 1,002 in 2017 to 3,723 in 2021, indicating a 3.7-fold increase. However, the proportion of patients receiving PR remained low at 2.9% in 2021. Enhanced access to PR services and improved evaluation strategies are essential for optimizing patient outcomes.
6.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
7.Levels of exposure markers among residents in environmentally vulnerable areas in Korea, the general population in Korea, and Asians in the United States
Kyung-Hwa CHOI ; Dahee HAN ; Sang-Yong EOM ; Yong Min CHO ; Young-Seoub HONG ; Woo Jin KIM
Epidemiology and Health 2025;47(1):e2025007-
This study compares biomarker levels among environmentally vulnerable residents in Korea, the general Korean population, and Asians in the United States. We selected 953 exposed residents and 204 controls from the Forensic Research via Omics Markers in Environmental Health Vulnerable Areas (FROM) study (2021-2023), 4,239 participants from the fourth Korean National Environmental Health Survey (2018-2020), and 996 Asians from the U.S. National Health and Nutrition Examination Survey (2017-March 2020). The analyzed biomarkers included blood and urinary metals, urinary metabolites of polycyclic aromatic hydrocarbons, nicotine, volatile organic compounds, and serum perfluorocarbon metabolites. The highest median biomarker levels varied by pollution source among older adults. In refineries, blood lead and cadmium (Cd), as well as urinary Cd and 2-hydroxyfluorene, were highest. Abandoned metal mines exhibited the highest blood and urinary mercury, urinary Cd, total arsenic (As), 2-naphthol, and cotinine levels. Coal-fired power plants showed the highest urinary 1- hydroxyphenanthrene levels, while cement factories had the highest urinary As3+ levels. Sprawls demonstrated the highest urinary monomethylarsonic acid, 1-hydroxypyrene, and phenylglyoxylic acid levels, and industrial areas recorded the highest levels of trans, trans-muconic acid, benzylmercapturic acid, and 2-methylhippuric acid. In general, biomarker levels were higher among exposed residents in the FROM study than in the general population; however, urinary 2-hydroxyfluorene and As5+ levels did not differ significantly. Exposure to pollution sources in environmentally vulnerable areas may elevate biomarker levels in residents.
8.Levels of exposure markers among residents in environmentally vulnerable areas in Korea, the general population in Korea, and Asians in the United States
Kyung-Hwa CHOI ; Dahee HAN ; Sang-Yong EOM ; Yong Min CHO ; Young-Seoub HONG ; Woo Jin KIM
Epidemiology and Health 2025;47(1):e2025007-
This study compares biomarker levels among environmentally vulnerable residents in Korea, the general Korean population, and Asians in the United States. We selected 953 exposed residents and 204 controls from the Forensic Research via Omics Markers in Environmental Health Vulnerable Areas (FROM) study (2021-2023), 4,239 participants from the fourth Korean National Environmental Health Survey (2018-2020), and 996 Asians from the U.S. National Health and Nutrition Examination Survey (2017-March 2020). The analyzed biomarkers included blood and urinary metals, urinary metabolites of polycyclic aromatic hydrocarbons, nicotine, volatile organic compounds, and serum perfluorocarbon metabolites. The highest median biomarker levels varied by pollution source among older adults. In refineries, blood lead and cadmium (Cd), as well as urinary Cd and 2-hydroxyfluorene, were highest. Abandoned metal mines exhibited the highest blood and urinary mercury, urinary Cd, total arsenic (As), 2-naphthol, and cotinine levels. Coal-fired power plants showed the highest urinary 1- hydroxyphenanthrene levels, while cement factories had the highest urinary As3+ levels. Sprawls demonstrated the highest urinary monomethylarsonic acid, 1-hydroxypyrene, and phenylglyoxylic acid levels, and industrial areas recorded the highest levels of trans, trans-muconic acid, benzylmercapturic acid, and 2-methylhippuric acid. In general, biomarker levels were higher among exposed residents in the FROM study than in the general population; however, urinary 2-hydroxyfluorene and As5+ levels did not differ significantly. Exposure to pollution sources in environmentally vulnerable areas may elevate biomarker levels in residents.
9.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
10.Levels of exposure markers among residents in environmentally vulnerable areas in Korea, the general population in Korea, and Asians in the United States
Kyung-Hwa CHOI ; Dahee HAN ; Sang-Yong EOM ; Yong Min CHO ; Young-Seoub HONG ; Woo Jin KIM
Epidemiology and Health 2025;47(1):e2025007-
This study compares biomarker levels among environmentally vulnerable residents in Korea, the general Korean population, and Asians in the United States. We selected 953 exposed residents and 204 controls from the Forensic Research via Omics Markers in Environmental Health Vulnerable Areas (FROM) study (2021-2023), 4,239 participants from the fourth Korean National Environmental Health Survey (2018-2020), and 996 Asians from the U.S. National Health and Nutrition Examination Survey (2017-March 2020). The analyzed biomarkers included blood and urinary metals, urinary metabolites of polycyclic aromatic hydrocarbons, nicotine, volatile organic compounds, and serum perfluorocarbon metabolites. The highest median biomarker levels varied by pollution source among older adults. In refineries, blood lead and cadmium (Cd), as well as urinary Cd and 2-hydroxyfluorene, were highest. Abandoned metal mines exhibited the highest blood and urinary mercury, urinary Cd, total arsenic (As), 2-naphthol, and cotinine levels. Coal-fired power plants showed the highest urinary 1- hydroxyphenanthrene levels, while cement factories had the highest urinary As3+ levels. Sprawls demonstrated the highest urinary monomethylarsonic acid, 1-hydroxypyrene, and phenylglyoxylic acid levels, and industrial areas recorded the highest levels of trans, trans-muconic acid, benzylmercapturic acid, and 2-methylhippuric acid. In general, biomarker levels were higher among exposed residents in the FROM study than in the general population; however, urinary 2-hydroxyfluorene and As5+ levels did not differ significantly. Exposure to pollution sources in environmentally vulnerable areas may elevate biomarker levels in residents.

Result Analysis
Print
Save
E-mail