1.The Utilization of Navigation and Emerging Technologies With Endoscopic Spine Surgery: A Narrative Review
Abhinav K. SHARMA ; Rafael Garcia DE OLIVEIRA ; Siravich SUVITHAYASIRI ; Piya CHAVALPARIT ; Chien Chun CHANG ; Yong H. KIM ; Charla R. FISCHER ; Sang LEE ; Samuel CHO ; Jin-Sung KIM ; Don Young PARK
Neurospine 2025;22(1):105-117
Endoscopic spine surgery (ESS) is growing in popularity worldwide. An expanding body of literature demonstrates rapid functional recovery with reduced morbidity compared to open techniques. Both full endoscopic spine surgery, or uniportal endoscopy, and unilateral biportal endoscopy (UBE) can be employed in conjunction with various navigation and enabling technologies for assistance with localization of anatomic orientation and assessment of the intraoperative target spinal pathology. This review article describes various navigation technologies in ESS, including 2-dimensional (2D) fluoroscopic imaging, 2D fluoroscopic navigation, 3-dimensional C-arm navigation, augmented reality, and spinal robotics. Employment of enabling navigation and emerging technology with the registration of patient-specific anatomy enables clear delineation of anatomic landmarks and facilitation of a successful procedure. Additionally, avoidance of common pitfalls during use of navigation systems in ESS is discussed in this review.
2.The Utilization of Navigation and Emerging Technologies With Endoscopic Spine Surgery: A Narrative Review
Abhinav K. SHARMA ; Rafael Garcia DE OLIVEIRA ; Siravich SUVITHAYASIRI ; Piya CHAVALPARIT ; Chien Chun CHANG ; Yong H. KIM ; Charla R. FISCHER ; Sang LEE ; Samuel CHO ; Jin-Sung KIM ; Don Young PARK
Neurospine 2025;22(1):105-117
Endoscopic spine surgery (ESS) is growing in popularity worldwide. An expanding body of literature demonstrates rapid functional recovery with reduced morbidity compared to open techniques. Both full endoscopic spine surgery, or uniportal endoscopy, and unilateral biportal endoscopy (UBE) can be employed in conjunction with various navigation and enabling technologies for assistance with localization of anatomic orientation and assessment of the intraoperative target spinal pathology. This review article describes various navigation technologies in ESS, including 2-dimensional (2D) fluoroscopic imaging, 2D fluoroscopic navigation, 3-dimensional C-arm navigation, augmented reality, and spinal robotics. Employment of enabling navigation and emerging technology with the registration of patient-specific anatomy enables clear delineation of anatomic landmarks and facilitation of a successful procedure. Additionally, avoidance of common pitfalls during use of navigation systems in ESS is discussed in this review.
3.The Utilization of Navigation and Emerging Technologies With Endoscopic Spine Surgery: A Narrative Review
Abhinav K. SHARMA ; Rafael Garcia DE OLIVEIRA ; Siravich SUVITHAYASIRI ; Piya CHAVALPARIT ; Chien Chun CHANG ; Yong H. KIM ; Charla R. FISCHER ; Sang LEE ; Samuel CHO ; Jin-Sung KIM ; Don Young PARK
Neurospine 2025;22(1):105-117
Endoscopic spine surgery (ESS) is growing in popularity worldwide. An expanding body of literature demonstrates rapid functional recovery with reduced morbidity compared to open techniques. Both full endoscopic spine surgery, or uniportal endoscopy, and unilateral biportal endoscopy (UBE) can be employed in conjunction with various navigation and enabling technologies for assistance with localization of anatomic orientation and assessment of the intraoperative target spinal pathology. This review article describes various navigation technologies in ESS, including 2-dimensional (2D) fluoroscopic imaging, 2D fluoroscopic navigation, 3-dimensional C-arm navigation, augmented reality, and spinal robotics. Employment of enabling navigation and emerging technology with the registration of patient-specific anatomy enables clear delineation of anatomic landmarks and facilitation of a successful procedure. Additionally, avoidance of common pitfalls during use of navigation systems in ESS is discussed in this review.
4.The Utilization of Navigation and Emerging Technologies With Endoscopic Spine Surgery: A Narrative Review
Abhinav K. SHARMA ; Rafael Garcia DE OLIVEIRA ; Siravich SUVITHAYASIRI ; Piya CHAVALPARIT ; Chien Chun CHANG ; Yong H. KIM ; Charla R. FISCHER ; Sang LEE ; Samuel CHO ; Jin-Sung KIM ; Don Young PARK
Neurospine 2025;22(1):105-117
Endoscopic spine surgery (ESS) is growing in popularity worldwide. An expanding body of literature demonstrates rapid functional recovery with reduced morbidity compared to open techniques. Both full endoscopic spine surgery, or uniportal endoscopy, and unilateral biportal endoscopy (UBE) can be employed in conjunction with various navigation and enabling technologies for assistance with localization of anatomic orientation and assessment of the intraoperative target spinal pathology. This review article describes various navigation technologies in ESS, including 2-dimensional (2D) fluoroscopic imaging, 2D fluoroscopic navigation, 3-dimensional C-arm navigation, augmented reality, and spinal robotics. Employment of enabling navigation and emerging technology with the registration of patient-specific anatomy enables clear delineation of anatomic landmarks and facilitation of a successful procedure. Additionally, avoidance of common pitfalls during use of navigation systems in ESS is discussed in this review.
5.The Utilization of Navigation and Emerging Technologies With Endoscopic Spine Surgery: A Narrative Review
Abhinav K. SHARMA ; Rafael Garcia DE OLIVEIRA ; Siravich SUVITHAYASIRI ; Piya CHAVALPARIT ; Chien Chun CHANG ; Yong H. KIM ; Charla R. FISCHER ; Sang LEE ; Samuel CHO ; Jin-Sung KIM ; Don Young PARK
Neurospine 2025;22(1):105-117
Endoscopic spine surgery (ESS) is growing in popularity worldwide. An expanding body of literature demonstrates rapid functional recovery with reduced morbidity compared to open techniques. Both full endoscopic spine surgery, or uniportal endoscopy, and unilateral biportal endoscopy (UBE) can be employed in conjunction with various navigation and enabling technologies for assistance with localization of anatomic orientation and assessment of the intraoperative target spinal pathology. This review article describes various navigation technologies in ESS, including 2-dimensional (2D) fluoroscopic imaging, 2D fluoroscopic navigation, 3-dimensional C-arm navigation, augmented reality, and spinal robotics. Employment of enabling navigation and emerging technology with the registration of patient-specific anatomy enables clear delineation of anatomic landmarks and facilitation of a successful procedure. Additionally, avoidance of common pitfalls during use of navigation systems in ESS is discussed in this review.
6.High water intake induces primary cilium elongation in renal tubular cells
Min Jung KONG ; Sang Jun HAN ; Sung Young SEU ; Ki-Hwan HAN ; Joshua H. LIPSCHUTZ ; Kwon Moo PARK
Kidney Research and Clinical Practice 2024;43(3):313-325
The primary cilium protrudes from the cell surface and functions as a mechanosensor. Recently, we found that water intake restriction shortens the primary cilia of renal tubular cells, and a blockage of the shortening disturbs the ability of the kidneys to concentrate urine. Here, we investigate whether high water intake (HWI) alters primary cilia length, and if so, what is its underlying mechanism and its role on kidney urine production. Methods: Experimental mice were given free access to normal water (normal water intake) or 3% sucrose-containing water for HWI for 2 days. Some mice were administered with U0126 (10 mg/kg body weight), an inhibitor of MEK kinase, from 2 days before HWI, daily. The primary cilium length and urine amount and osmolality were investigated. Results: HWI-induced diluted urine production and primary cilium elongation in renal tubular cells. HWI increased the expression of α-tubulin acetyltransferase 1 (αTAT1), leading to the acetylation of α-tubulins, a core protein of the primary cilia. HWI also increased phosphorylated ERK1/2 (p-ERK1/2) and exocyst complex component 5 (Exoc5) expression in the kidneys. U0126 blocked HWI-induced increases in αTAT1, p-ERK1/2, and Exoc5 expression. U0126 inhibited HWI-induced α-tubulin acetylation, primary cilium elongation, urine amount increase, and urine osmolality decrease. Conclusion: These results show that increased water intake elongates the primary cilia via ERK1/2 activation and that ERK inhibition prevents primary cilium elongation and diluted urine production. These data suggest that the elongation of primary cilium length is associated with the production of diluted urine.
7.Shortening of primary cilia length is associated with urine concentration in the kidneys
Min Jung KONG ; Sang Jun HAN ; Sung Young SEU ; Ki-Hwan HAN ; Joshua H. LIPSCHUTZ ; Kwon Moo PARK
Kidney Research and Clinical Practice 2023;42(3):312-324
The primary cilium, a microtubule-based cellular organelle present in certain kidney cells, functions as a mechano-sensor to monitor fluid flow in addition to various other biological functions. In kidneys, the primary cilia protrude into the tubular lumen and are directly exposed to pro-urine flow and components. However, their effects on urine concentration remain to be defined. Here, we investigated the association between primary cilia and urine concentration. Methods: Mice either had free access to water (normal water intake, NWI) or were not allowed access to water (water deprivation, WD). Some mice received tubastatin, an inhibitor of histone deacetylase 6 (HDAC6), which regulates the acetylation of α-tubulin, a core protein of microtubules. Results: WD decreased urine output and increased urine osmolality, concomitant with apical plasma membrane localization of aquaporin 2 (AQP2) in the kidney. After WD, compared with after NWI, the lengths of primary cilia in renal tubular epithelial cells were shortened and HDAC6 activity increased. WD induced deacetylation of α-tubulin without altering α-tubulin levels in the kidney. Tubastatin prevented the shortening of cilia through increasing HDAC6 activity and consequently increasing acetylated α-tubulin expression. Furthermore, tubastatin prevented the WD-induced reduction of urine output, urine osmolality increase, and apical plasma membrane localization of AQP2. Conclusions: WD shortens primary cilia length through HDAC6 activation and α-tubulin deacetylation, while HDAC6 inhibition blocks the WD-induced changes in cilia length and urine output. This suggests that cilia length alterations are involved, at least in part, in the regulation of body water balance and urine concentration.
8.Do Magnets Have the Potential to Serve as a Stabilizer for the Shoulder Joint in Massive Rotator Cuff Tears?: A Biomechanical Cadaveric Study
Yoon Sang JEON ; Sang Hyun KO ; Yun Moon JEON ; Dong Jin RYU ; Jeong Seok KIM ; Hyun Soon PARK ; Min-Shik CHUNG ; Daniel KWAK ; Michelle H. MCGARRY ; Thay Q. LEE
Clinics in Orthopedic Surgery 2023;15(4):616-626
Background:
Disruption of the rotator cuff muscles compromises concavity compression force, which leads to superior migration of the humeral head and loss of stability. A novel idea of using the magnetic force to achieve shoulder stabilization in massive rotator cuff tears (MRCTs) was considered because the magnets can stabilize two separate entities with an attraction force. This study aimed to investigate the biomechanical effect of the magnetic force on shoulder stabilization in MRCTs.
Methods:
Seven fresh frozen cadaveric specimens were used with a customized shoulder testing system. Three testing conditions were set up: condition 1, intact rotator cuff without magnets; condition 2, an MRCT without magnets; condition 3, an MRCT with magnets. For each condition, anterior-posterior translation, superior translation, superior migration, and subacromial contact pressure were measured at 0°, 30°, and 60° of abduction. The abduction capability of condition 2 was compared with that of condition 3.
Results:
The anterior-posterior and superior translations increased in condition 2; however, they decreased compared to condition 2 when the magnets were applied (condition 3) in multiple test positions and loadings (p <0.05). Abduction capability improved significantly in condition 3 compared with that in condition 2, even for less deltoid loading (p < 0.05).
Conclusions
The magnet biomechanically played a positive role in stabilizing the shoulder joint and enabled abduction with less deltoid force in MRCTs. However, to ensure that the magnet is clinically applicable as a stabilizer for the shoulder joint, it is necessary to thoroughly verify its safety in the human body and to conduct further research on technical challenges.
9.Validity and Reliability of the Korean-Translated Version of the International Cooperative Ataxia Rating Scale in Cerebellar Ataxia
Jinse PARK ; Jin Whan CHO ; Jinyoung YOUN ; Engseok OH ; Wooyoung JANG ; Joong-Seok KIM ; Yoon-Sang OH ; Hyungyoung HWANG ; Chang-Hwan RYU ; Jin-Young AHN ; Jee-Young LEE ; Seong-Beom KOH ; Jae H. PARK ; Hee-Tae KIM
Journal of Movement Disorders 2023;16(1):86-90
Objective:
The International Cooperative Ataxia Rating Scale (ICARS) is a semiquantitative clinical scale for ataxia that is widely used in numerous countries. The purpose of this study was to investigate the validity and reliability of the Korean-translated version of the ICARS.
Methods:
Eighty-eight patients who presented with cerebellar ataxia were enrolled. We investigated the construct validity using exploratory factor analysis (EFA) and confirmatory factor analysis (CFA). We also investigated the internal consistency using Cronbach’s α and intrarater and interrater reliability using intraclass correlation coefficients.
Results:
The Korean-translated ICARS showed satisfactory construct validity using EFA and CFA. It also revealed good interrater and intrarater reliability and showed acceptable internal consistency. However, subscale 4 for assessing oculomotor disorder showed moderate internal consistency.
Conclusion
This is the first report to investigate the validity and reliability of the Korean-translated ICARS. Our results showed excellent construct and convergent validity. The reliability is also acceptable.
10.Validation Study of the Official Korean Version of the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale
Jinse PARK ; Seong-Beom KOH ; Kyum-Yil KWON ; Sang Jin KIM ; Jae Woo KIM ; Joong-Seok KIM ; Kun-Woo PARK ; Jong Sam PAIK ; Young H. SOHN ; Jin-Young AHN ; Eungseok OH ; Jinyoung YOUN ; Ji-Young LEE ; Phil Hyu LEE ; Wooyoung JANG ; Han-Joon KIM ; Beom Seok JEON ; Sun Ju CHUNG ; Jin Whan CHO ; Sang-Myung CHEON ; Suk Yun KANG ; Mee Young PARK ; Seongho PARK ; Young Eun HUH ; Seok Jae KANG ; Hee-Tae KIM
Journal of Clinical Neurology 2021;17(3):501-501

Result Analysis
Print
Save
E-mail