1.The Utilization of Navigation and Emerging Technologies With Endoscopic Spine Surgery: A Narrative Review
Abhinav K. SHARMA ; Rafael Garcia DE OLIVEIRA ; Siravich SUVITHAYASIRI ; Piya CHAVALPARIT ; Chien Chun CHANG ; Yong H. KIM ; Charla R. FISCHER ; Sang LEE ; Samuel CHO ; Jin-Sung KIM ; Don Young PARK
Neurospine 2025;22(1):105-117
Endoscopic spine surgery (ESS) is growing in popularity worldwide. An expanding body of literature demonstrates rapid functional recovery with reduced morbidity compared to open techniques. Both full endoscopic spine surgery, or uniportal endoscopy, and unilateral biportal endoscopy (UBE) can be employed in conjunction with various navigation and enabling technologies for assistance with localization of anatomic orientation and assessment of the intraoperative target spinal pathology. This review article describes various navigation technologies in ESS, including 2-dimensional (2D) fluoroscopic imaging, 2D fluoroscopic navigation, 3-dimensional C-arm navigation, augmented reality, and spinal robotics. Employment of enabling navigation and emerging technology with the registration of patient-specific anatomy enables clear delineation of anatomic landmarks and facilitation of a successful procedure. Additionally, avoidance of common pitfalls during use of navigation systems in ESS is discussed in this review.
2.The Utilization of Navigation and Emerging Technologies With Endoscopic Spine Surgery: A Narrative Review
Abhinav K. SHARMA ; Rafael Garcia DE OLIVEIRA ; Siravich SUVITHAYASIRI ; Piya CHAVALPARIT ; Chien Chun CHANG ; Yong H. KIM ; Charla R. FISCHER ; Sang LEE ; Samuel CHO ; Jin-Sung KIM ; Don Young PARK
Neurospine 2025;22(1):105-117
Endoscopic spine surgery (ESS) is growing in popularity worldwide. An expanding body of literature demonstrates rapid functional recovery with reduced morbidity compared to open techniques. Both full endoscopic spine surgery, or uniportal endoscopy, and unilateral biportal endoscopy (UBE) can be employed in conjunction with various navigation and enabling technologies for assistance with localization of anatomic orientation and assessment of the intraoperative target spinal pathology. This review article describes various navigation technologies in ESS, including 2-dimensional (2D) fluoroscopic imaging, 2D fluoroscopic navigation, 3-dimensional C-arm navigation, augmented reality, and spinal robotics. Employment of enabling navigation and emerging technology with the registration of patient-specific anatomy enables clear delineation of anatomic landmarks and facilitation of a successful procedure. Additionally, avoidance of common pitfalls during use of navigation systems in ESS is discussed in this review.
3.The Utilization of Navigation and Emerging Technologies With Endoscopic Spine Surgery: A Narrative Review
Abhinav K. SHARMA ; Rafael Garcia DE OLIVEIRA ; Siravich SUVITHAYASIRI ; Piya CHAVALPARIT ; Chien Chun CHANG ; Yong H. KIM ; Charla R. FISCHER ; Sang LEE ; Samuel CHO ; Jin-Sung KIM ; Don Young PARK
Neurospine 2025;22(1):105-117
Endoscopic spine surgery (ESS) is growing in popularity worldwide. An expanding body of literature demonstrates rapid functional recovery with reduced morbidity compared to open techniques. Both full endoscopic spine surgery, or uniportal endoscopy, and unilateral biportal endoscopy (UBE) can be employed in conjunction with various navigation and enabling technologies for assistance with localization of anatomic orientation and assessment of the intraoperative target spinal pathology. This review article describes various navigation technologies in ESS, including 2-dimensional (2D) fluoroscopic imaging, 2D fluoroscopic navigation, 3-dimensional C-arm navigation, augmented reality, and spinal robotics. Employment of enabling navigation and emerging technology with the registration of patient-specific anatomy enables clear delineation of anatomic landmarks and facilitation of a successful procedure. Additionally, avoidance of common pitfalls during use of navigation systems in ESS is discussed in this review.
4.The Utilization of Navigation and Emerging Technologies With Endoscopic Spine Surgery: A Narrative Review
Abhinav K. SHARMA ; Rafael Garcia DE OLIVEIRA ; Siravich SUVITHAYASIRI ; Piya CHAVALPARIT ; Chien Chun CHANG ; Yong H. KIM ; Charla R. FISCHER ; Sang LEE ; Samuel CHO ; Jin-Sung KIM ; Don Young PARK
Neurospine 2025;22(1):105-117
Endoscopic spine surgery (ESS) is growing in popularity worldwide. An expanding body of literature demonstrates rapid functional recovery with reduced morbidity compared to open techniques. Both full endoscopic spine surgery, or uniportal endoscopy, and unilateral biportal endoscopy (UBE) can be employed in conjunction with various navigation and enabling technologies for assistance with localization of anatomic orientation and assessment of the intraoperative target spinal pathology. This review article describes various navigation technologies in ESS, including 2-dimensional (2D) fluoroscopic imaging, 2D fluoroscopic navigation, 3-dimensional C-arm navigation, augmented reality, and spinal robotics. Employment of enabling navigation and emerging technology with the registration of patient-specific anatomy enables clear delineation of anatomic landmarks and facilitation of a successful procedure. Additionally, avoidance of common pitfalls during use of navigation systems in ESS is discussed in this review.
5.The Utilization of Navigation and Emerging Technologies With Endoscopic Spine Surgery: A Narrative Review
Abhinav K. SHARMA ; Rafael Garcia DE OLIVEIRA ; Siravich SUVITHAYASIRI ; Piya CHAVALPARIT ; Chien Chun CHANG ; Yong H. KIM ; Charla R. FISCHER ; Sang LEE ; Samuel CHO ; Jin-Sung KIM ; Don Young PARK
Neurospine 2025;22(1):105-117
Endoscopic spine surgery (ESS) is growing in popularity worldwide. An expanding body of literature demonstrates rapid functional recovery with reduced morbidity compared to open techniques. Both full endoscopic spine surgery, or uniportal endoscopy, and unilateral biportal endoscopy (UBE) can be employed in conjunction with various navigation and enabling technologies for assistance with localization of anatomic orientation and assessment of the intraoperative target spinal pathology. This review article describes various navigation technologies in ESS, including 2-dimensional (2D) fluoroscopic imaging, 2D fluoroscopic navigation, 3-dimensional C-arm navigation, augmented reality, and spinal robotics. Employment of enabling navigation and emerging technology with the registration of patient-specific anatomy enables clear delineation of anatomic landmarks and facilitation of a successful procedure. Additionally, avoidance of common pitfalls during use of navigation systems in ESS is discussed in this review.
6.Radiographic and Clinical Outcomes of Transverse Process Hook Placement at the Proximal Thoracic Upper Instrumented Vertebra in Adult Spinal Deformity Surgery
Sang Hun LEE ; Micheal RAAD ; Andrew H. KIM ; David B. COHEN ; Khaled M. KEBAISH
Neurospine 2024;21(2):502-509
Objective:
Few studies have reported radiographic and clinical outcomes of transverse process hook (TPH) placement at the proximal thoracic upper instrumented vertebra (UIV) in adult spinal deformity (ASD) surgery. This study aims to investigate radiographic and clinical outcomes of TPH placement at the UIV for ASD surgery.
Methods:
This is a retrospective cohort of 56 patients with ASD (age, 59 ± 13 years; followup, 44 ± 19 months) from Johns Hopkins Hospital, who underwent long posterior spinal fusion to the proximal thoracic spine (T2–5). Visual analogue scale (VAS) for back pain, Oswestry Disability Index (ODI), 36-item Short Form health survey scores, thoracic kyphosis (TK), lumbar lordosis, sacral slope, pelvic tilt, pelvic incidence, proximal junctional kyphosis (PJK) angle, PJK incidence, pattern of PJK, grades of TPH dislodgement, revision surgery, and factors associated with high-grade TPH dislodgement were analyzed.
Results:
VAS for back pain and ODI values improved significantly from preoperatively to final follow-up. Mean change in PJK angle was 12° (range, 0.5°–43°). Twenty patients (36%) developed PJK, of whom 13 had compression fractures at 1 vertebra distal to the UIV (UIV–1). Final TPH position was stable in 42 patients (75%). In most patients (86%), TPH dislodgement did not progress after 6-month postoperative follow-up. Three patients (5.3%) underwent revision surgery to extend the fusion because of symptomatic PJK. Unstable TPH position was associated only with revision surgery and TK.
Conclusion
TPH placement at the proximal thoracic UIV for long fusion showed favorable clinical and radiographic outcomes in terms of the incidence of PJK and mean PJK angle at mean 44-month follow-up. TPHs placed in the proximal thoracic UIV were in stable position in 75% of patients. Compression fracture at UIV–1 was the most common pattern of PJK. PJK angle progression was greater in revision cases and in patients with greater preoperative thoracic kyphosis.
7.Radiographic and Clinical Outcomes of Transverse Process Hook Placement at the Proximal Thoracic Upper Instrumented Vertebra in Adult Spinal Deformity Surgery
Sang Hun LEE ; Micheal RAAD ; Andrew H. KIM ; David B. COHEN ; Khaled M. KEBAISH
Neurospine 2024;21(2):502-509
Objective:
Few studies have reported radiographic and clinical outcomes of transverse process hook (TPH) placement at the proximal thoracic upper instrumented vertebra (UIV) in adult spinal deformity (ASD) surgery. This study aims to investigate radiographic and clinical outcomes of TPH placement at the UIV for ASD surgery.
Methods:
This is a retrospective cohort of 56 patients with ASD (age, 59 ± 13 years; followup, 44 ± 19 months) from Johns Hopkins Hospital, who underwent long posterior spinal fusion to the proximal thoracic spine (T2–5). Visual analogue scale (VAS) for back pain, Oswestry Disability Index (ODI), 36-item Short Form health survey scores, thoracic kyphosis (TK), lumbar lordosis, sacral slope, pelvic tilt, pelvic incidence, proximal junctional kyphosis (PJK) angle, PJK incidence, pattern of PJK, grades of TPH dislodgement, revision surgery, and factors associated with high-grade TPH dislodgement were analyzed.
Results:
VAS for back pain and ODI values improved significantly from preoperatively to final follow-up. Mean change in PJK angle was 12° (range, 0.5°–43°). Twenty patients (36%) developed PJK, of whom 13 had compression fractures at 1 vertebra distal to the UIV (UIV–1). Final TPH position was stable in 42 patients (75%). In most patients (86%), TPH dislodgement did not progress after 6-month postoperative follow-up. Three patients (5.3%) underwent revision surgery to extend the fusion because of symptomatic PJK. Unstable TPH position was associated only with revision surgery and TK.
Conclusion
TPH placement at the proximal thoracic UIV for long fusion showed favorable clinical and radiographic outcomes in terms of the incidence of PJK and mean PJK angle at mean 44-month follow-up. TPHs placed in the proximal thoracic UIV were in stable position in 75% of patients. Compression fracture at UIV–1 was the most common pattern of PJK. PJK angle progression was greater in revision cases and in patients with greater preoperative thoracic kyphosis.
8.Radiographic and Clinical Outcomes of Transverse Process Hook Placement at the Proximal Thoracic Upper Instrumented Vertebra in Adult Spinal Deformity Surgery
Sang Hun LEE ; Micheal RAAD ; Andrew H. KIM ; David B. COHEN ; Khaled M. KEBAISH
Neurospine 2024;21(2):502-509
Objective:
Few studies have reported radiographic and clinical outcomes of transverse process hook (TPH) placement at the proximal thoracic upper instrumented vertebra (UIV) in adult spinal deformity (ASD) surgery. This study aims to investigate radiographic and clinical outcomes of TPH placement at the UIV for ASD surgery.
Methods:
This is a retrospective cohort of 56 patients with ASD (age, 59 ± 13 years; followup, 44 ± 19 months) from Johns Hopkins Hospital, who underwent long posterior spinal fusion to the proximal thoracic spine (T2–5). Visual analogue scale (VAS) for back pain, Oswestry Disability Index (ODI), 36-item Short Form health survey scores, thoracic kyphosis (TK), lumbar lordosis, sacral slope, pelvic tilt, pelvic incidence, proximal junctional kyphosis (PJK) angle, PJK incidence, pattern of PJK, grades of TPH dislodgement, revision surgery, and factors associated with high-grade TPH dislodgement were analyzed.
Results:
VAS for back pain and ODI values improved significantly from preoperatively to final follow-up. Mean change in PJK angle was 12° (range, 0.5°–43°). Twenty patients (36%) developed PJK, of whom 13 had compression fractures at 1 vertebra distal to the UIV (UIV–1). Final TPH position was stable in 42 patients (75%). In most patients (86%), TPH dislodgement did not progress after 6-month postoperative follow-up. Three patients (5.3%) underwent revision surgery to extend the fusion because of symptomatic PJK. Unstable TPH position was associated only with revision surgery and TK.
Conclusion
TPH placement at the proximal thoracic UIV for long fusion showed favorable clinical and radiographic outcomes in terms of the incidence of PJK and mean PJK angle at mean 44-month follow-up. TPHs placed in the proximal thoracic UIV were in stable position in 75% of patients. Compression fracture at UIV–1 was the most common pattern of PJK. PJK angle progression was greater in revision cases and in patients with greater preoperative thoracic kyphosis.
9.Radiographic and Clinical Outcomes of Transverse Process Hook Placement at the Proximal Thoracic Upper Instrumented Vertebra in Adult Spinal Deformity Surgery
Sang Hun LEE ; Micheal RAAD ; Andrew H. KIM ; David B. COHEN ; Khaled M. KEBAISH
Neurospine 2024;21(2):502-509
Objective:
Few studies have reported radiographic and clinical outcomes of transverse process hook (TPH) placement at the proximal thoracic upper instrumented vertebra (UIV) in adult spinal deformity (ASD) surgery. This study aims to investigate radiographic and clinical outcomes of TPH placement at the UIV for ASD surgery.
Methods:
This is a retrospective cohort of 56 patients with ASD (age, 59 ± 13 years; followup, 44 ± 19 months) from Johns Hopkins Hospital, who underwent long posterior spinal fusion to the proximal thoracic spine (T2–5). Visual analogue scale (VAS) for back pain, Oswestry Disability Index (ODI), 36-item Short Form health survey scores, thoracic kyphosis (TK), lumbar lordosis, sacral slope, pelvic tilt, pelvic incidence, proximal junctional kyphosis (PJK) angle, PJK incidence, pattern of PJK, grades of TPH dislodgement, revision surgery, and factors associated with high-grade TPH dislodgement were analyzed.
Results:
VAS for back pain and ODI values improved significantly from preoperatively to final follow-up. Mean change in PJK angle was 12° (range, 0.5°–43°). Twenty patients (36%) developed PJK, of whom 13 had compression fractures at 1 vertebra distal to the UIV (UIV–1). Final TPH position was stable in 42 patients (75%). In most patients (86%), TPH dislodgement did not progress after 6-month postoperative follow-up. Three patients (5.3%) underwent revision surgery to extend the fusion because of symptomatic PJK. Unstable TPH position was associated only with revision surgery and TK.
Conclusion
TPH placement at the proximal thoracic UIV for long fusion showed favorable clinical and radiographic outcomes in terms of the incidence of PJK and mean PJK angle at mean 44-month follow-up. TPHs placed in the proximal thoracic UIV were in stable position in 75% of patients. Compression fracture at UIV–1 was the most common pattern of PJK. PJK angle progression was greater in revision cases and in patients with greater preoperative thoracic kyphosis.
10.Radiographic and Clinical Outcomes of Transverse Process Hook Placement at the Proximal Thoracic Upper Instrumented Vertebra in Adult Spinal Deformity Surgery
Sang Hun LEE ; Micheal RAAD ; Andrew H. KIM ; David B. COHEN ; Khaled M. KEBAISH
Neurospine 2024;21(2):502-509
Objective:
Few studies have reported radiographic and clinical outcomes of transverse process hook (TPH) placement at the proximal thoracic upper instrumented vertebra (UIV) in adult spinal deformity (ASD) surgery. This study aims to investigate radiographic and clinical outcomes of TPH placement at the UIV for ASD surgery.
Methods:
This is a retrospective cohort of 56 patients with ASD (age, 59 ± 13 years; followup, 44 ± 19 months) from Johns Hopkins Hospital, who underwent long posterior spinal fusion to the proximal thoracic spine (T2–5). Visual analogue scale (VAS) for back pain, Oswestry Disability Index (ODI), 36-item Short Form health survey scores, thoracic kyphosis (TK), lumbar lordosis, sacral slope, pelvic tilt, pelvic incidence, proximal junctional kyphosis (PJK) angle, PJK incidence, pattern of PJK, grades of TPH dislodgement, revision surgery, and factors associated with high-grade TPH dislodgement were analyzed.
Results:
VAS for back pain and ODI values improved significantly from preoperatively to final follow-up. Mean change in PJK angle was 12° (range, 0.5°–43°). Twenty patients (36%) developed PJK, of whom 13 had compression fractures at 1 vertebra distal to the UIV (UIV–1). Final TPH position was stable in 42 patients (75%). In most patients (86%), TPH dislodgement did not progress after 6-month postoperative follow-up. Three patients (5.3%) underwent revision surgery to extend the fusion because of symptomatic PJK. Unstable TPH position was associated only with revision surgery and TK.
Conclusion
TPH placement at the proximal thoracic UIV for long fusion showed favorable clinical and radiographic outcomes in terms of the incidence of PJK and mean PJK angle at mean 44-month follow-up. TPHs placed in the proximal thoracic UIV were in stable position in 75% of patients. Compression fracture at UIV–1 was the most common pattern of PJK. PJK angle progression was greater in revision cases and in patients with greater preoperative thoracic kyphosis.

Result Analysis
Print
Save
E-mail