1.Research progress on transcription factors and regulatory proteins of Salvia miltiorrhiza.
Wen XU ; Mei TIAN ; Ye SHEN ; Juan GUO ; Bao-Long JIN ; Guang-Hong CUI
China Journal of Chinese Materia Medica 2025;50(1):58-70
Salvia miltiorrhiza is a perennial herb of the genus Salvia(Lamiaceae). As one of the earliest medicinal plants to undergo molecular biology research, it has gradually become a model plant for molecular biology of medicinal plants. With the gradual analysis of the genome of S. miltiorrhiza and the biosynthetic pathways of its main active components tanshinone and salvianolic acids, the transcriptional regulation mediated by transcription factors and related regulatory proteins has gradually become a new research focus. Due to the lack of scientific and unified naming of transcription factors and different research indexes in different literature, this paper systematically sorted out the transcription factors in different literature with the genomes of DSS3 from selfing for three generations and bh2-7 from selfing for six generations as reference. In total, 73 transcription factors and related regulatory proteins belonging to 13 gene families were identified. The effects of overexpression or gene silencing experiments on tanshinone and salvianolic acids were also analyzed. This study unified the identified transcription factors, which laid a foundation for further constructing the regulatory networks of secondary metabolites and insect or stress resistance and improving the quality of medicinal materials by using global transcriptional regulation engineering.
Salvia miltiorrhiza/chemistry*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
;
Transcription Factors/metabolism*
;
Abietanes/metabolism*
2.Drying kinetics of Salviae Miltiorrhizae Radix et Rhizoma and dynamics of active components in drying process.
Yu-Qin LI ; Xiu-Xiu SHA ; Zhe ZHANG ; Shu-Lan SU ; Liang NI ; Sheng GUO ; Hui YAN ; Da-Wei QIAN ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2025;50(1):128-139
This study explored the drying kinetics of Salviae Miltiorrhizae Radix et Rhizoma(SM), established the suitable models simulating the drying kinetics, and then analyzed the dynamic changes of active components during the drying processes with different methods, aiming to provide a basis for the establishment of suitable drying methods and the quality control of SM. The drying kinetics were studied based on the drying curve, drying rate, moisture effective diffusion coefficient, and drying activation energy, and the appropriate drying kinetics model of SM was established. The drying performance of different methods, such as hot air drying, infrared drying, and microwave drying of SM was evaluated, and the changes in the content of 10 salvianolic acids and 6 tanshinones during drying were analyzed by UPLC-TQ-MS. The Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS) was employed to evaluate the quality of SM dried with different methods. The results showed that the drying rate and moisture effective diffusion coefficient of SM increased with the rise in drying temperature, and the maximum drying rates of different methods were in the order of microwave drying > infrared drying > hot air drying, slice > whole root. The drying rate decreased with the rise in temperature and the extension of drying time. The activation energy of hot air drying was higher than that of infrared drying in SM. The most suitable model for simulating the drying process of SM was the Page model. The TOPSIS results suggested infrared drying at 50 ℃ was the optimal drying method for SM. During the drying process, the content of salvianolic acids increased in different degrees with the loss of moisture, among which salvianolic acid B showed the largest increase of 44 times compared with that in the fresh medicinal material. Tanshinones also existed in the fresh herb of SM, and the content of tanshinone Ⅱ_A increased by 3 times after drying. The results provided a basis for the establishment of suitable drying methods and the quality control of SM.
Salvia miltiorrhiza/chemistry*
;
Desiccation/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Rhizome/chemistry*
;
Kinetics
;
Quality Control
;
Abietanes
3.Research advances in mechanism of salvianolic acid B in treating coronary heart disease.
Hong-Ming CAO ; Hui SUN ; Chang LIU ; Guang-Li YAN ; Ling KONG ; Ying HAN ; Xi-Jun WANG
China Journal of Chinese Materia Medica 2025;50(6):1449-1457
Coronary heart disease is a cardiovascular disease that affects coronary arteries. It presents high incidence and high mortality worldwide, bringing a serious threat to human health and quality of life. Salviae Miltiorrhizae Radix et Rhizoma derived from Salvia miltiorrhiza is widely used in the treatment of cardiovascular diseases, such as coronary heart disease. Salvianolic acid B is an active component in Salviae Miltiorrhizae Radix et Rhizoma extracts, and studies have shown that it has anti-inflammatory, antioxidant, apoptosis-and autophagy-regulating, anti-fibrosis, and metabolism-modulating effects. This article reviews the research progress regarding the therapeutic effect of salvianolic acid B on coronary heart disease in the recent decade. It elaborates on the role and mechanism of salvianolic acid B in treating coronary heart disease from multiple perspectives, such as the inhibition of thrombosis, improvement of blood circulation, reduction of myocardial cell injury, and inhibition of cardiac remodeling. This article provides a theoretical basis for the application of Chinese medicinal materials and TCM prescriptions containing salvianolic acid B in the treatment of coronary heart disease.
Humans
;
Benzofurans/administration & dosage*
;
Coronary Disease/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Salvia miltiorrhiza/chemistry*
;
Animals
;
Depsides
4.Salvia miltiorrhiza components and gut microbiota interactions in Helicobacter pylori infection.
Shao-Jian LI ; Jin-Xin MIAO ; Fei WANG ; Hao-Yu WANG ; Yao-Wu MA ; Ying JIANG ; Xia XUE
Journal of Integrative Medicine 2025;23(5):462-470
Salvia miltiorrhiza (Danshen) is a traditional Chinese herb that is commonly known for its cardiovascular and hepatoprotective benefits. Recent studies have confirmed that Danshen and its bioactive components can influence gut microbial homeostasis, thereby affecting Helicobacter pylori (HP) colonization in the human stomach. HP is a bacterial pathogen associated with various gastrointestinal diseases. Current HP treatments mainly involve antibiotics and proton pump inhibitors. However, their efficacy is strongly compromised by the rapid emergence of antibiotic resistance in HP and genetic heterogeneity among patients. The interaction between Danshen and gut microbial status provides a novel perspective for HP treatment. Understanding the medical properties of Danshen in altering gut microbiota and eliminating HP, as well as the underlying mechanisms, is important for improving human gastrointestinal healthcare. This review investigates the interaction between Danshen and gut microbiota and its impact on HP infection using databases including Web of Science, PubMed, and Google Scholar. We explored the unconventional intersection between Danshen, gut microbiota, and HP infection, shedding light on their intricate interplay and potential therapeutic implications. A comprehensive understanding of this interaction provides valuable insights into developing novel therapeutic strategies that target the gut microbiota to mitigate HP-associated gastrointestinal disorders. Please cite this article as: Li SJ, Miao JX, Wang F, Wang HY, Ma YW, Jiang Y, Xue X. Salvia miltiorrhiza components and gut microbiota interactions in Helicobacter pylori infection. J Integr Med. 2025; 23(5):462-470.
Salvia miltiorrhiza/chemistry*
;
Gastrointestinal Microbiome/drug effects*
;
Humans
;
Helicobacter Infections/microbiology*
;
Helicobacter pylori/drug effects*
;
Drugs, Chinese Herbal/therapeutic use*
5.Danshen Injection inhibits peritoneal dialysis fluid-induced endothelial-mesenchymal transition in HMrSV5 cells by regulating the TGF-β/Smad signaling pathway.
Lihua YU ; Jingya LI ; Xiaoqi WANG ; Li LI ; Ya CHEN ; Feiyu WANG ; Kun ZHANG ; Tongsheng WANG
Journal of Southern Medical University 2024;44(12):2276-2282
OBJECTIVES:
To investigate the inhibitory effect of Danshen Injection on endothelial-mesenchymal transition (EndMT) induced by peritoneal dialysis fluid in HMrSV5 cells and the role of the TGF‑β/Smad signaling pathway in mediating this effect.
METHODS:
HMrSV5 cells cultured in 40% peritoneal dialysis solution for 72 h to induce EndMT were treated with 0.05%, 0.1% and 0.5% Danshen Injection. CCK-8 assay was used to assess the changes in viability of the treated cells, and the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), and vascular endothelial growth factor (VEGF) in the cell supernatant were detected using ELISA; Western blotting was performed to detect the protein expressions of E-cadherin, α-smooth muscle actin (α-SMA), p-Smad 2/3, and Smad 7 in the cells.
RESULTS:
Culture in 40% peritoneal dialysis fluid for 72 induced significant EndMT in HMrSV5 cells, which exhibited obviously lowered cell viability. Danshen Injection within the concentration range of 0.025%-1.5% did not significantly affect the viability of the cells. Exposure of HMrSV5 cells to peritoneal dialysis fluid for 72 h significantly increased the production of IL-6, TNF‑α, TGF‑β and VEGF, upregulated the protein expressions of α‑SMA and p-Smad 2/3, and lowered the expressions of E-cadherin and Smad7 proteins. Treatment of the exposed cells with Danshen injection significantly increased cell viability and cellular expressions of E-cadherin and Smad 7 proteins and reduced the production of IL-6, TNF-α, TGF-β and VEGF and the protein expressions of α‑SMA and p-Smad 2/3.
CONCLUSIONS
Danshen Injection can suppress peritoneal dialysis fluid-induced EndMT in HMrSV5 cells possibly by regulating the TGF-β/Smad signaling pathway.
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Transforming Growth Factor beta/metabolism*
;
Humans
;
Peritoneal Dialysis/adverse effects*
;
Salvia miltiorrhiza
;
Epithelial-Mesenchymal Transition/drug effects*
;
Smad Proteins/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Cell Line
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Cadherins/metabolism*
;
Actins/metabolism*
;
Dialysis Solutions
;
Endothelial-Mesenchymal Transition
6.Advantage analysis of flow-through cell method in quality evaluation of Chinese patent medicine: a case study of Danshen Tablets.
Zhe WU ; Hong YI ; Chun LI ; Qi-Ping CUI ; Hong-Yu LIU ; Feng-Qian GUO ; Ding-Hua XIANG ; Xiao-Qian LIU ; Xiao-Li SUN
China Journal of Chinese Materia Medica 2023;48(20):5548-5557
To explore the quality consistency evaluation method for multi-component traditional Chinese medicine and establish a dissolution evaluation method suitable for the characteristics of multi-component Chinese patent medicine, this study discussed the characteristics and advantages of the flow-through cell method in the dissolution evaluation of Chinese patent medicine by comparing the impact of the small cup method and the flow-through cell method on the dissolution behavior of water-soluble and lipid-soluble major active components of Danshen Tablets. Dissolution tests were performed using the small cup method as described in the 2020 edition of the Chinese Pharmacopoeia and the newly introduced flow-through cell method(closed-loop method) with water solution containing 0.5% SDS as dissolution medium. Cumulative dissolution curves of the water-soluble component salvianolic acid B and the lipid-soluble component tanshinone Ⅱ_A in Danshen Tablets were plotted, and fitting and similarity analysis of the dissolution models was conducted to identify the characteristics and advantages of the flow-through cell method. For the small cup method, 150 mL of water containing 0.5% SDS was used as the dissolution medium, with a rotation speed of 75 r·min~(-1) and a temperature of(37±0.5) ℃, and 3 mL of samples were taken at 15, 30 min, 1, 2, and 4 h, with fresh dissolution medium added at the same temperature and volume. For the flow-through cell method, a closed-loop system was used. Danshen Tablets were placed in the flow-through cell with approximately 6.7 g of glass beads, and 150 mL of water containing 0.5% SDS was used as the dissolution medium. The flow rate was set at 20 mL·min~(-1), and the temperature and sampling were the same as the small cup method. The results showed that compared with the small cup method, the flow-through cell method had stronger discriminative power and higher sensitivity in distinguishing the dissolution behavior of the two components, and could better reflect the differences in formulation quality, especially for water-insoluble lipid-soluble components. Given that there were no essential differences in the in vitro release kinetics between the two methods, the flow-through cell method could not only replace the traditional small cup method but also better guide the formulation development and identify quality issues of formulations.
Salvia miltiorrhiza
;
Medicine, Chinese Traditional
;
Tablets
;
Water
;
Lipids
;
Solubility
7.Investigation of the mechanism of action and identification of candidate traditional Chinese medicines for the treatment of ischemic stroke in the Danshen-Jiangxiang pair based on drug-target-disease association network.
Journal of Biomedical Engineering 2023;40(4):762-769
The therapeutic efficacy of Danshen and Jiangxiang in the treatment of ischemic stroke (IS) is relatively significant. Studying the mechanism of action of Danshen and Jiangxiang in the treatment of IS can effectively identify candidate traditional Chinese medicines (TCM) with efficacy. However, it is challenging to analyze the effector substances and explain the mechanism of action of Danshen-Jiangxiang from a systematic perspective using traditional pharmacological approaches. In this study, a systematic study was conducted based on the drug-target-symptom-disease association network using complex network theory. On the basis of the association information about Danshen, Jiangxiang and IS, the protein-protein interaction (PPI) network and the "drug pair-pharmacodynamic ingredient-target-IS" network were constructed. The different topological features of the networks were analyzed to identify the core pharmacodynamic ingredients including formononetin in Jiangxiang, cryptotanshinone and tanshinone IIA in Danshen as well as core target proteins such as prostaglandin G/H synthase 2, retinoic acid receptor RXR-alpha, sodium channel protein type 5 subunit alpha, prostaglandin G/H synthase 1 and beta-2 adrenergic receptor. Further, a method for screening IS candidates based on TCM symptoms was proposed to identify key TCM symptoms and syndromes using the "drug pair-TCM symptom-syndrome-IS" network. The results showed that three TCMs, namely Puhuang, Sanleng and Zelan, might be potential therapeutic candidates for IS, which provided a theoretical reference for the development of drugs for the treatment of IS.
Ischemic Stroke
;
Salvia miltiorrhiza
;
Stroke/drug therapy*
;
Cyclooxygenase 2
;
Prostaglandins
8.Functional characterization of CYP81C16 involved in the tanshinone biosynthetic pathway in Salvia miltiorrhiza.
Li REN ; Linglong LUO ; Zhimin HU ; Ying MA ; Jian WANG ; Yatian CHENG ; Baolong JIN ; Tong CHEN ; Jinfu TANG ; Guanghong CUI ; Juan GUO ; Luqi HUANG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(12):938-949
Danshen, the dried roots and rhizomes of Salvia miltiorrhiza Bunge (S. miltiorrhiza), is widely used in the treatment of cardiovascular and cerebrovascular diseases. Tanshinones, the bioactive compounds from Danshen, exhibit a wide spectrum of pharmacological properties, suggesting their potential for future therapeutic applications. Tanshinone biosynthesis is a complex process involving at least six P450 enzymes that have been identified and characterized, most of which belong to the CYP76 and CYP71 families. In this study, CYP81C16, a member of the CYP71 clan, was identified in S. miltiorrhiza. An in vitro assay revealed that it could catalyze the hydroxylation of four para-quinone-type tanshinones, namely neocryptotanshinone, deoxyneocryptotanshinone, and danshenxinkuns A and B. SmCYP81C16 emerged as a potential broad-spectrum oxidase targeting the C-18 position of para-quinone-type tanshinones with an impressive relative conversion rate exceeding 90%. Kinetic evaluations andin vivo assays underscored its highest affinity towards neocryptotanshinone among the tested substrates. The overexpression of SmCYP81C16 promoted the accumulation of (iso)tanshinone in hairy root lines. The characterization of SmCYP81C16 in this study accentuates its potential as a pivotal tool in the biotechnological production of tanshinones, either through microbial or plant metabolic engineering.
Humans
;
Salvia miltiorrhiza/metabolism*
;
Biosynthetic Pathways
;
Quinones/metabolism*
;
Plant Roots/metabolism*
;
Gene Expression Regulation, Plant
9.Effect of Rhizophagus intraradices on growth of Salvia miltiorrhiza.
Ling-Ling ZHENG ; Mei-Lan CHEN ; Li-Ping KANG ; Ying-Li WANG ; Xiu-Teng ZHOU
China Journal of Chinese Materia Medica 2023;48(2):349-355
The study aimed to explore the effects of inoculation of Rhizophagus intraradices on the biomass, effective component content, and endogenous hormone content of Salvia miltiorrhiza through pot experiments. The number of leaves, plant height, dry weight of aboveground and underground parts, branch number, root number, root length, root diameter, and other biomass were mea-sured by weighing and counting methods. The content of salvianolic acid B, caffeic acid, rosmarinic acid, tanshinone Ⅰ, tanshinone Ⅱ_A, cryptotanshinone, and other effective components was determined by ultra-high performance liquid chromatography. The content of ABA and GA_3 was determined by triple quadrupole mass spectrometry. The correlations between biomass and effective components and between effective components and plant hormones ABA and GA_3 were analyzed. The results showed that R. intraradices significan-tly increased the aboveground dry weight, leaf number, and root number of S. miltiorrhiza by 0.24-0.65 times, respectively. The content of salvianolic acid B and rosmarinic acid in the aboveground part and the content of salvianolic acid B, caffeic acid, rosmarinic acid, tanshinone Ⅰ, and tanshinone Ⅱ_A in the underground part were significantly increased by 0.44-1.78 times, respectively. R. intraradices infection significantly increased the GA_3/ABA values of aboveground and underground parts by 3.82 and 76.47 times, respectively. The correlation analysis showed that caffeic acid, the effective component of the aboveground part, was significantly positively correlated with plant height, tanshinone Ⅱ_A, the effective component of the underground part, was significantly positively correlated with biomass root number, cryptotanshinone, and dry weight, while rosmarinic acid was significantly negatively correlated with dry weight. There were significant positive correlations between cryptotanshinone and ABA, tanshinone Ⅱ_A and ABA and GA_3, and caffeic acid and GA_3. In conclusion, R. intraradices can promote the accumulation of biomass and secondary metabolites of S. miltiorrhiza and regulate the balance between plant hormones ABA and GA_3, thereby promoting the growth of S. miltiorrhiza.
Salvia miltiorrhiza/chemistry*
;
Plant Growth Regulators/analysis*
;
Plant Roots/chemistry*
10.Effects of temperature and humidity on infection of Fusarium oxysporum in seedlings of Salvia miltiorrhiza.
Sha LIU ; Chun-Juan PU ; Yu-Zhi LUO ; Zi-Han WANG ; Xia SUN ; Mei-Lan CHEN
China Journal of Chinese Materia Medica 2023;48(1):39-44
Wilt disease is a major disease of cultivated Salvia miltiorrhiza, which is caused by Fusarium oxysporum. Since the infection process of F. oxysporum in plants is affected by environment factors, this study was conducted to reveal the relationship between disease severity and concentration of the pathogen in plants in the infection process of F. oxysporum in seedlings of S. miltiorrhiza by pot experiments and to reveal the effects of temperature and humidity on the infection process. The results showed that, after inoculation of S. miltiorrhiza seedlings with F. oxysporum, the pathogen in different parts was detected at different time, and it was first detected in substrates. With the continuous propagation of the pathogen(4-5 d), it gradually infected the roots and stems of the seedlings, and the plants had yellowing leaves and withering. The number of the pathogen reached the maximum in each part after 7-8 d, and then gradually decreased in the later stage of the disease. The concentration of the pathogen in substrates, roots and stems of S. miltiorrhiza showed a trend of decreasing after increasing with the aggravation of the disease and reached the maximum in the samples of moderate morbidity, while the concentration in the samples of severe morbidity decreased. In addition, the infection of F. oxysporum in seedlings of S. miltiorrhiza was affected by temperature and humidity. The suitable temperature was 25-30 ℃ and the suitable humidity was 80%-90%. This study could provide guidance for the experiments on pathogenicity of F. oxysporum, screening of biocontrol bacteria and controlling of wilt.
Seedlings/microbiology*
;
Salvia miltiorrhiza
;
Temperature
;
Humidity
;
Fusarium

Result Analysis
Print
Save
E-mail