1.Echinochrome A inhibits HMGB1-induced vascular smooth muscle cell migration by suppressing osteopontin expression
Ju Yeon KIM ; Hee Eun BAE ; Sun Sik BAE ; Hyun SUNG ; Chi Dae KIM
The Korean Journal of Physiology and Pharmacology 2025;29(1):83-92
Echinochrome A (Ech A) isolated from marine organisms is a therapeutic effector for various cardiovascular diseases, but its precise mechanisms are unclear.This study identified the role and mechanisms mediating the effects of Ech A on the migration of vascular smooth muscle cells (VSMCs) induced by high-mobility group box 1 (HMGB1). Compared to the control cells, the migration of VSMCs stimulated with HMGB1 (100 ng/ml) was markedly increased, which was significantly attenuated in cells pretreated with MPIIIB10 (100 ng/ml), a neutralizing monoclonal antibody for osteopontin (OPN). In VSMCs stimulated with HMGB1, the increased expression of OPN mRNA and protein was accompanied by an increased OPN promoter activity. In reporter gene assays using OPN promoter-luciferase constructs, the promoter region 538-234 bp of the transcription start site containing the binding sites for activator protein 1 (AP-1) was shown to be responsible for the increased transcriptional activity by HMGB1. In addition, the binding activity of AP-1 was increased in HMGB1-stimulated cells, highlighting the pivotal role of AP-1 on OPN expression in HMGB1-stimulated VSMCs. An examination of the vascular effects of Ech A showed that the increased AP-1 binding/promoter activities and OPN expression induced by HMGB1 were attenuated in cells pretreated with Ech A (3 or 10 μM). Similarly, Ech A inhibited HMGB1-induced VSMC migration in a concentration-dependent manner. These findings suggest that Ech A inhibits VSMC migration by suppressing OPN expression.Hence, Ech A is suggested as a potential therapeutic strategy for vascular remodeling in the injured vasculatures.
2.Association of Nutritional Intake with Physical Activity and Handgrip Strength in Individuals with Airflow Limitation
I Re HEO ; Tae Hoon KIM ; Jong Hwan JEONG ; Manbong HEO ; Sun Mi JU ; Jung-Wan YOO ; Seung Jun LEE ; Yu Ji CHO ; Yi Yeong JEONG ; Jong Deog LEE ; Ho Cheol KIM
Tuberculosis and Respiratory Diseases 2025;88(1):120-129
Background:
We investigated whether nutritional intake is associated with physical activity (PA) and handgrip strength (HGS) in individuals with airflow limitation.
Methods:
This study analyzed data from the 2014 and 2016 Korean National Health and Nutrition Examination Survey. We assessed total protein intake (g/day), caloric intake (kcal/day), and other nutritional intakes, using a 24-hour dietary recall questionnaire. HGS was measured three times for each hand using a digital grip strength dynamometer, and PA was assessed as health-enhancing PA. Airflow limitation was defined as a forced expiratory volume/forced vital capacity ratio of 0.7 in individuals over 40 years of age. Participants were categorized into groups based on their PA levels and HGS measurements: active aerobic PA vs. non-active aerobic PA, and normal HGS vs. low HGS.
Results:
Among the 622 individuals with airflow limitation, those involved in active aerobic PA and those with higher HGS had notably higher total food, calorie, water, protein, and lipid intake. The correlations between protein and caloric intake with HGS were strong (correlation coefficients=0.344 and 0.346, respectively). The forest plots show that higher intakes of food, water, calories, protein, and lipids are positively associated with active aerobic PA, while higher intakes of these nutrients are inversely associated with low HGS. However, in the multivariate logistic regression analysis, no significant associations were observed between nutritional intake and active aerobic PA or HGS.
Conclusion
Nutritional intake was found to not be an independent factor associated with PA and HGS. However, the observed correlations suggest potential indirect effects that warrant further investigation.
3.Ultrasound evaluation of clinical mimics of deep vein thrombosis: essential insights for radiologists in interpretation
Dongsuk IM ; Lyo Min KWON ; Sun Young PARK ; Min Su PARK ; Won Ju HONG
Ultrasonography 2025;44(3):171-188
Ultrasonography (US) is a sensitive and radiation-free technique for diagnosing deep vein thrombosis (DVT). Therefore, when DVT is clinically suspected but not detected on US, radiologists should consider a range of alternative differential diagnoses. This review article presents the imaging findings of clinical conditions that mimic DVT, which can be distinguished using a multimodal radiologic approach. Additionally, DVT mimics can be categorized into two groups based on whether a flat or normal waveform is observed on Doppler US. This article details the imaging findings and clinical presentations of DVT mimics, organized by these classifications. This information may help radiologists make more accurate diagnoses, enabling patients to receive appropriate treatment in a timely manner.
4.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
Purpose:
Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS.
Materials and Methods:
This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches.
Results:
TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making.
Conclusion
TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment.
5.Erratum to ‘Genomic biomarkers to predict response to atezolizumab plus bevacizumab immunotherapy in hepatocellular carcinoma: Insights from the IMbrave150 trial’ Clin Mol Hepatol 2024;30:807-823
Sun Young YIM ; Sung Hwan LEE ; Seung-Woo BAEK ; Bohwa SOHN ; Yun Seong JEONG ; Sang-Hee KANG ; Kena PARK ; Hyewon PARK ; Sunyoung S. LEE ; Ahmed O. KASEB ; Young Nyun PARK ; Sun-Hee LEEM ; Michael A. CURRAN ; Ji Hoon KIM ; Ju-Seog LEE
Clinical and Molecular Hepatology 2025;31(2):669-670
6.KASL clinical practice guidelines for the management of metabolic dysfunction-associated steatotic liver disease 2025
Won SOHN ; Young-Sun LEE ; Soon Sun KIM ; Jung Hee KIM ; Young-Joo JIN ; Gi-Ae KIM ; Pil Soo SUNG ; Jeong-Ju YOO ; Young CHANG ; Eun Joo LEE ; Hye Won LEE ; Miyoung CHOI ; Su Jong YU ; Young Kul JUNG ; Byoung Kuk JANG ;
Clinical and Molecular Hepatology 2025;31(Suppl):S1-S31
7.Correspondence to editorial 2 on “Genomic biomarkers to predict response to atezolizumab plus bevacizumab immunotherapy in hepatocellular carcinoma: insights from the IMbrave150 trial”
Sun Young YIM ; Sung Hwan LEE ; Ji Hoon KIM ; Sunyoung S LEE ; Ahmed O KASEB ; Ju-Seog LEE
Clinical and Molecular Hepatology 2025;31(1):e84-e86
8.Correspondence to editorial 1 on “Genomic biomarkers to predict response to atezolizumab plus bevacizumab immunotherapy in hepatocellular carcinoma: insights from the IMbrave150 Trial”
Sung Hwan LEE ; Sun Young YIM ; Ji Hoon KIM ; Sunyoung S. LEE ; Ahmed O. KASEB ; Ju-Seog LEE
Clinical and Molecular Hepatology 2025;31(1):e81-e83
9.Correspondence to letter to the editor on “Genomic biomarkers to predict response to atezolizumab plus bevacizumab immunotherapy in hepatocellular carcinoma: Insights from the IMbrave150 trial”
Sung Hwan LEE ; Sun Young YIM ; Ji Hoon KIM ; Sunyoung S LEE ; Ahmed O KASEB ; Peng WEI ; Ju-Seog LEE
Clinical and Molecular Hepatology 2025;31(1):e110-e112
10.Carnitine Metabolite as a Potential Circulating Biomarker for Sarcopenia in Men
Je Hyun SEO ; Jung-Min KOH ; Han Jin CHO ; Hanjun KIM ; Young‑Sun LEE ; Su Jung KIM ; Pil Whan YOON ; Won KIM ; Sung Jin BAE ; Hong-Kyu KIM ; Hyun Ju YOO ; Seung Hun LEE
Endocrinology and Metabolism 2025;40(1):93-102
Background:
Sarcopenia, a multifactorial disorder involving metabolic disturbance, suggests potential for metabolite biomarkers. Carnitine (CN), essential for skeletal muscle energy metabolism, may be a candidate biomarker. We investigated whether CN metabolites are biomarkers for sarcopenia.
Methods:
Associations between the CN metabolites identified from an animal model of sarcopenia and muscle cells and sarcopenia status were evaluated in men from an age-matched discovery (72 cases, 72 controls) and a validation (21 cases, 47 controls) cohort.
Results:
An association between CN metabolites and sarcopenia showed in mouse and cell studies. In the discovery cohort, plasma C5-CN levels were lower in sarcopenic men (P=0.005). C5-CN levels in men tended to be associated with handgrip strength (HGS) (P=0.098) and were significantly associated with skeletal muscle mass (P=0.003). Each standard deviation increase in C5-CN levels reduced the odds of low muscle mass (odd ratio, 0.61; 95% confidence interval [CI], 0.42 to 0.89). The area under the receiver operating characteristic curve (AUROC) of CN score using a regression equation of C5-CN levels, for sarcopenia was 0.635 (95% CI, 0.544 to 0.726). In the discovery cohort, addition of CN score to HGS significantly improved AUROC from 0.646 (95% CI, 0.575 to 0.717; HGS only) to 0.727 (95% CI, 0.643 to 0.810; P=0.006; HGS+CN score). The improvement was confirmed in the validation cohort (AUROC=0.563; 95% CI, 0.470 to 0.656 for HGS; and AUROC=0.712; 95% CI, 0.569 to 0.855 for HGS+CN score; P=0.027).
Conclusion
C5-CN, indicative of low muscle mass, is a potential circulating biomarker for sarcopenia in men. Further studies are required to confirm these results and explore sarcopenia-related metabolomic changes.

Result Analysis
Print
Save
E-mail