1.Epidemiological characteristics and influencing factors of severe fever with thrombocytopenia syndrome in Zhejiang Province
LÜ ; Jing ; XU Xinying ; QIAO Yingyi ; SHI Xinglong ; YUE Fang ; LIU Ying ; CHENG Chuanlong ; ZHANG Yuqi ; SUN Jimin ; LI Xiujun
Journal of Preventive Medicine 2026;38(1):10-14
Objective:
To analyze the epidemiological characteristics and influencing factors of severe fever with thrombocytopenia syndrome (SFTS) in Zhejiang Province from 2019 to 2023, so as to provide the reference for strengthening SFTS prevention and control.
Methods:
Data on laboratory-confirmed SFTS cases in Zhejiang Province from 2019 to 2023 were collected through the Infectious Disease Reporting Information System of Chinese Disease Prevention and Control Information System. Meteorological data, geographic environment and socioeconomic factors during the same period were collected from the fifth-generation European Centre for Medium-Range Weather Forecasts, Geospatial Data Cloud, and Zhejiang Statistical Yearbook, respectively. Descriptive epidemiological methods were used to analyze the epidemiological characteristics of SFTS from 2019 to 2023, and a Bayesian spatio-temporal model was constructed to analyze the influencing factors of SFTS incidence.
Results:
A total of 578 SFTS cases were reported in Zhejiang Province from 2019 to 2023, with an annual average incidence of 0.23/105. The peak period was from May to July, accounting for 52.60%. There were 309 males and 269 females, with a male-to-female ratio of 1.15∶1. The cases were mainly aged 50-<80 years, farmers, and in rural areas, accounting for 82.53%, 77.34%, and 75.43%, respectively. Taizhou City and Shaoxing City reported more SFTS cases, while Shaoxing City and Zhoushan City had higher annual average incidences of SFTS. The Bayesian spatio-temporal interaction model showed good goodness of fit. The results showed that mean temperature (RR=1.626, 95%CI: 1.111-2.378) and mean wind speed (RR=1.814, 95%CI: 1.321-2.492) were positively correlated with SFTS risk, while altitude (RR=0.432, 95%CI: 0.230-0.829) and population density (RR=0.443, 95%CI: 0.207-0.964) were negatively correlated with SFTS risk.
Conclusions
SFTS in Zhejiang Province peaks from May to July. Middle-aged and elderly people and farmers are high-risk populations. Taizhou City, Shaoxing City, and Zhoushan City are high-incidence areas. Mean temperature, mean wind speed, altitude, and population density can all affect the risk of SFTS incidence.
2.Proteomic Analysis of Danlou Tablet in Improving Platelet Function for Treating Coronary Heart Disease with Phlegm-stasis Intermingling Syndrome in Minipigs
Ziyan WANG ; Ying LI ; Aoao WANG ; Hongxu MENG ; Yue SHI ; Yanlei MA ; Guoyuan ZHANG ; Lei LI ; Jianxun LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):41-53
ObjectiveThis paper aims to observe the role of Danlou tablet in treating coronary heart disease (CHD) with phlegm-stasis intermingling syndrome in minipigs by improving platelet function and explore the potential pharmacological mechanism of Danlou tablet in regulating platelet function by using proteomics technology. MethodsThirty Bama minipigs were randomly divided into a normal control group (6 pigs) and a high-fat diet group (24 pigs). After 2 weeks of high-fat diet feeding, the high-fat diet group was randomly subdivided into a model group, an atorvastatin group (1 mg·kg-1), and Danlou tablet groups (0.6 g·kg-1 and 0.3 g·kg-1). All groups continued to receive a high-fat diet for 8 weeks after the procedure. The normal control group was given a regular diet, underwent only coronary angiography, and did not receive an interventional injury procedure. The model group and each administration group were fed a high-fat diet. Two weeks later, they underwent a coronary angiography injury procedure. After the procedure, drugs were mixed into the feed every morning for 8 consecutive weeks, with the minipigs maintained on a continuous high-fat diet during this period. Quantitative proteomics technology was further used to study platelet proteins, and differential proteins were obtained by screening. Bioinformatics analysis was performed to analyze key regulatory proteins and biological pathways involved in the therapeutic effect of Danlou tablet on CHD with phlegm-stasis intermingling syndrome. ResultsCompared with the normal control group, the model group showed a significant increase in total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) of minipigs' serum (P<0.01), a significant shortening in prothrombin time of (PT) (P<0.01), a coagulation function index, and an increase in whole blood viscosity (P<0.01) and platelet aggregation rate (P<0.01). Moreover, the platelet morphology was altered, and the contents of endothelin-1 (ET-1) and nitric oxide (NO) were significantly increased (P<0.01). Hemodynamic parameters were obviously abnormal, including significantly decreased systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), left ventricular systolic pressure (LVSP), and left ventricular maximal positive dp/dt (LV+dp/dtmax) (P<0.01). Left ventricular maximal negative dp/dt (LV-dp/dtmax) was significantly increased (P<0.01). Besides, there were myocardial cell hypertrophy, obvious edematous degeneration, massive interstitial inflammatory cell infiltration, high degree of fibrosis, and coronary endothelial atherosclerosis. TC and TG levels in minipigs' serum were significantly reduced in Danlou tablet groups with 0.6 g·kg-1 and 0.3 g·kg-1 (P<0.05, P<0.01), compared with those in the model group. LDL-C was decreased in the Danlou tablet group with 0.6 g·kg-1 (P<0.05). The whole blood viscosity under low and high shear conditions was significantly reduced in the Danlou tablet group with 0.6 g·kg-1 (P<0.05). In groups with all doses of Danlou tablet, maximum aggregation rate (MAR) and average aggregation rate (AAR) were significantly decreased (P<0.05, P<0.01), and platelets' morphological changes such as pseudopodia extension were reduced. ET-1 levels in the serum were significantly reduced. In the Danlou tablet group with 0.6 g·kg-1, NO level in the serum was reduced (P<0.05). In groups with all doses of Danlou tablet, DBP and MAP were significantly increased (P<0.05). In the Danlou tablet group with 0.6 g·kg-1, LVSP and LV+dp/dtmax were significantly increased (P<0.05, P<0.01), and LV-dp/dtmax was significantly decreased (P<0.05). In groups with all doses of Danlou tablet, edematous degeneration in myocardial tissue was milder, and coronary artery lesion degree was significantly alleviated. Compared with the normal control group, there were 94 differentially expressed proteins in the model group, including 81 up-regulated and 13 down-regulated proteins. Compared with the model group, the Danlou tablet group with 0.6 g·kg-1 showed 174 differentially expressed proteins, including 100 up-regulated and 74 down-regulated proteins. A total of 30 proteins were reversed after Danlou tablet intervention. Bioinformatics analysis revealed that its pharmacological mechanism may exert anti-platelet activation, aggregation, and adhesion effects through biological pathways such as regulation of actin cytoskeleton, platelet activation pathway, Fcγ receptor-mediated phagocytosis, as well as proteins such as growth factor receptor-bound protein 2 (GRB2), Ras-related C3 botulinum toxin substrate 2 (RAC2), RAC1, and heat shock protein 90 alpha family class A member 1 (HSP90AA1). ConclusionDanlou tablet can effectively reduce platelet activation and aggregation, exerting a good therapeutic effect on CHD with phlegm-stasis intermingling syndrome in minipigs. Its pharmacological mechanism may involve regulating biological pathways such as actin cytoskeleton and platelet activation pathway, as well as proteins like GRB2, RAC2, RAC1, and HSP90AA1, thereby exerting a pharmacological effect in anti-platelet activation, aggregation, and adhesion.
3.Exploring Biological Characteristics of Rat Model of Atrial Fibrillation with Phlegm-heat and Blood Stasis Pattern Based on Metabolomics
Ailin HOU ; Yuxuan LIU ; Wenxi YU ; Xing JI ; Chan WU ; Dazhuo SHI ; Ying ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):245-255
ObjectiveTo establish an animal model of atrial fibrillation(AF) that accurately reflects the phlegm-heat and blood stasis(TRYZ) pathogenesis in traditional Chinese medicine. MethodsForty SPF-grade SD rats were randomly assigned using a random number table to the following groups:the control group, the TRYZ+AF group,the AF group and the TRYZ group, with ten rats in each group. The TRYZ+AF and TRYZ groups underwent a high-fat diet combined with intraperitoneal lipopolysaccharide(LPS) injection to simulate the pathological alterations of TRYZ syndrome. Groups TRYZ+AF and AF were induced with acetylcholine-calcium chloride(Ach-CaCl2) via caudal vein injection to induce AF. The control group received no intervention and was maintained under normal conditions. The modeling period lasted 3 weeks. Electrocardiography was used to assess AF episodes and duration, echocardiography evaluated left atrial dimensions and cardiac function, fully automated biochemical analyzer measured the levels of total cholesterol(TC), triglycerides(TG), high-density lipoprotein cholesterol(HDL-C) and low-density lipoprotein cholesterol(LDL-C), hemoreometer analyzed the whole blood viscosity, plasma viscosity, and whole blood reduced viscosity, a coagulation analyzer assessed prothrombin time(PT), activated partial thromboplastin time(APTT), thrombin time(TT), and fibrinogen(FIB), enzyme-linked immunosorbent assay(ELISA) was used to determine the levels of C-reactive protein(CRP), interleukin(IL)-1β, IL-6, IL-17, tumour necrosis factor(TNF)-α, matrix metalloproteinase-9(MMP-9), galectin-3(Gal-3), Collagen Ⅰ, and α-smooth muscle actin(α-SMA). Hematoxylin-eosin(HE) staining and Masson's trichrome staining were used to analyze pathological changes in atrial myocardium, Western blot was employed to detect MMP-9, Collagen Ⅰ and α-SMA protein expression in myocardial tissue, real-time quantitative polymerase chain reaction(Real-time PCR) evaluated fibrous factor gene expression levels. Changes in the TRYZ syndrome were assessed via body weight, tongue color[red(R), green(G), and blue(B)], and rectal temperature. Ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed to detect differential metabolites between the control group and the TRYZ+AF group. ResultsFollowing three weeks of sustained modeling, compared with the control group, rats in the TRYZ+AF and the TRYZ groups exhibited reduced body weight, dry faeces, elevated rectal temperature, dark red tongue, decreased RGB values on the tongue surface, and markedly elevated TC and LDL-C levels(P<0.05, P<0.01). The TRYZ+AF, TRYZ, and AF groups exhibited significantly decreased TT, APTT and PT, along with markedly elevated whole blood viscosity and FIB(P<0.05, P<0.01). Rats in the TRYZ+AF and AF groups exhibited AF rhythm, markedly decreased heart rate, prolonged RR intervals, enlarged left atrium, and significantly reduced ejection fraction and shortening fraction(P<0.05, P<0.01). Serum levels of CRP, IL-1β, IL-6, IL-17, TNF-α, MMP-9, Gal-3, Collagen Ⅰ, and α-SMA were elevated in rats from the TRYZ+AF, TRYZ, and AF groups compared to the control group, with the most pronounced increase observed in the TRYZ+AF group(P<0.05, P<0.01). Histopathology revealed that the collagen fiber deposition in the atrial of rats in the TRYZ+AF, TRYZ and AF groups was higher than that in the control group(P<0.05, P<0.01). Western blot and Real-time PCR results further demonstrated that the protein and mRNA expression levels of MMP-9, Collagen Ⅰ and α-SMA in the myocardial tissue of the TRYZ+AF group were higher than those in the other three groups(P<0.05, P<0.01). Metabolomic analysis revealed 173 differentially expressed metabolites in the TRYZ+AF group and the control group, primarily enriched in pathways such as glycerophospholipid metabolism and glycolysis/gluconeogenesis. ConclusionThis study successfully establishes a rat model of AF integrated with the TRYZ syndrome, demonstrating the pathological process where the interactions of phlegm, heat and stasis jointly trigger tremor, this provides a reliable experimental tool for in-depth research into the biological basis of this disease syndrome.
4.In vitro studies of the anti-inflammatory activity of micheliolide on myeloproliferative neoplasm cell lines
Meng CHEN ; Jinqin LIU ; Ying ZHANG ; Zhexin SHI ; Zhijian XIAO
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):68-79
Objective:
The effects and molecular mechanisms of micheliolide on cytokine expression in myeloproliferative neoplasm cell lines were explored based on the signal transducer and activator of transcription 3 (STAT3)/nuclear factor-kappa B (NF-κB) signaling pathways.
Methods:
The UKE-1 and SET-2 cell lines were investigated, and micheliolide concentrations were screened using the CCK-8 assay. The UKE-1 and SET-2 cells were divided into the control and micheliolide-treated groups at concentrations of 2.5, 5.0, and 10.0 μmol/L. Each group received 1 mL of micheliolide solution at final concentrations of 2.5, 5.0, and 10.0 μmol/L, respectively, whereas the control group only received an equal volume of culture medium. The inhibition rates of interleukin-1β(IL-1β), tumor necrosis factor-α (TNF-α), and chemokine ligand 2 (CCL2) mRNA expression in cells from each group were detected using real-time fluorescent PCR (RT-PCR). Western blotting was used to measure STAT3 and phosphorylated STAT3 (p-STAT3) protein expression levels in cells from each group. Reversal experiments with reduced glutathione and dithiothreitol were performed using UKE-1 cells, which were divided into the control group, micheliolide, micheliolide + glutathione, micheliolide + dithiothreitol, and glutathione + dithiothreitol groups. Western blotting was used to detect the STAT3 and p-STAT3 protein expression levels in the cells of each group. UKE-1 cells were stimulated with TNF-α (5 μg/L) to replicate a pathological model of excessive cytokine secretion. Subsequently, UKE-1 cells were divided into the control, model, and three micheliolide-treated groups at concentrations of 2.5, 5.0, and 10.0 μmol/L. RT-PCR was used to measure the indicators above. An enzyme-linked immunosorbent assay (ELISA) was used to detect the CCL2 content in the cell culture media of each group. Western blotting was performed to assess the protein expression levels of STAT3, p-STAT3, and proteins related to the NF-κB signaling pathway.
Results:
Compared with the control group, the proliferation inhibition rates of UKE-1 cells at 24, 48, and 72 h increased in the micheliolide-treated groups at concentrations of 2.5, 5.0, 10.0, and 20.0 μmol/L. Similarly, the proliferation inhibition rates of SET-2 at 48 and 72 h increased in the micheliolide-treated groups at concentrations of 5.0, 10.0, and 20.0 μmol/L (P<0.05). Concentrations of 2.5, 5.0, and 10.0 μmol/L were selected for further studies to exclude the potential influence of high micheliolide concentrations on subsequent result owing to reduced cell numbers. Compared with the control group, the inhibition rates of TNF-α mRNA expression in UKE-1 and SET-2 cells increased in the micheliolide-treated groups at concentrations of 2.5, 5.0, and 10.0 μmol/L. Similarly, the inhibition rates of IL-1β mRNA expression in UKE-1 and SET-2 cells also increased in the micheliolide-treated groups at concentrations of 5.0 and 10.0 μmol/L. Additionally, the inhibition rate of CCL2 mRNA expression in UKE-1 and SET-2 cells increased in the micheliolide-treated group at a concentration of 10 μmol/L (P<0.05). Compared with the model group, the inhibition rates of TNF-α, IL-1β, and CCL2 mRNA expression in UKE-1 cells increased in the micheliolide-treated groups at concentrations of 2.5, 5.0, and 10.0 μmol/L after stimulation with TNF-α (P<0.05). ELISA showed that compared with the control group, the CCL2 content in UKE-1 cells increased in the model group. Compared with the model group, the CCL2 content in UKE-1 cells decreased in the micheliolide-treated groups at concentrations of 2.5, 5.0, and 10.0 μmol/L (P<0.05). Western blotting showed that compared with the control group, the p-STAT3 protein expression levels in UKE-1 and SET-2 cells were downregulated in the micheliolide-treated groups at concentrations of 5.0 and 10.0 μmol/L, and the protein expression level of STAT3 in SET-2 was also downregulated (P<0.05). Compared with the control group, the p-STAT3 expression level in UKE-1 cells decreased in the micheliolide group in the reductive glutathione and dithiothreitol reversal experiments. Compared with the micheliolide group, the p-STAT3 protein expression levels in UKE-1 cells increased in the micheliolide + dithiothreitol and micheliolide + glutathione groups (P<0.05). Compared with the control group, the model group showed increased p-STAT3, p-IκKα/β, p-IκBα, and p-NF-κB p65 protein expression and decreased IκBα protein expression after stimulation with TNF-α. Compared with the model group, the micheliolide-treated groups showed decreased p-IκKα/β, p-IκBα, p-STAT3, and p-NF-κB p65 protein expression at concentrations of 2.5, 5.0, and 10.0 μmol/L, whereas the micheliolide-treated groups showed increased IκBα protein expression at concentrations of 5.0 and 10.0 μmol/L (P<0.05).
Conclusion
Micheliolide potently suppresses IL-1β, TNF-α, and CCL2 mRNA expression in UKE-1 and SET-2 cells, as well as CCL2 secretion by UKE-1 cells, which may be associated with STAT3 phosphorylation suppression and NF-κB signaling pathway activation.
5.Autophagy Abnormalities in PCOS and Targeted Treatment with Traditional Chinese Medicine: A Review
Xinxin YANG ; Zhicheng JIA ; Mengyu SHI ; Yongqian LI ; Peixuan WANG ; Ying GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):313-322
Polycystic ovary syndrome (PCOS) is a common gynecological endocrine and reproductive disorder,with the main clinical manifestations including ovulation failure,insulin resistance,hyperandrogenism,and obesity. Its occurrence and development are closely related to cellular regulatory mechanisms such as apoptosis,autophagy,oxidative stress,and inflammatory response. Autophagy,as a clearance mechanism that maintains cellular homeostasis,plays a crucial role in maintaining the growth,development,and maturation of oocytes. Exploring the mechanism of autophagy during the occurrence and development of diseases can help develop treatment methods for PCOS by regulating autophagy. Studies have shown that autophagy plays an important role in the pathogenesis of PCOS,and it can affect the occurrence and development of PCOS through multiple pathways,levels,and targets. Traditional Chinese medicine (TCM) regulates autophagy in ovarian granulosa cells or endometrium of patients with PCOS by targeting the expression of autophagy signaling pathways,regulatory factors,and non-coding single-stranded RNA molecules,thereby alleviating inflammation,regulating metabolism disorders,and balancing hormone levels in PCOS. Accordingly,TCM can ameliorate pathological conditions such as insulin resistance,hyperandrogenism,and ovulation failure in PCOS. This article summarizes the TCM formulas and extracts for the treatment of PCOS,as well as the main autophagy pathways and regulatory factors involved,aiming to provide reference and suggestions for the future treatment of PCOS with TCM by regulating autophagy.
6.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
7.Plasma miRNA testing in the differential diagnosis of very early-stage hepatocellular carcinoma: a multicenter real-world study
Jie HU ; Ying XU ; Ao HUANG ; Lei YU ; Zheng WANG ; Xiaoying WANG ; Xinrong YANG ; Zhenbin DING ; Qinghai YE ; Yinghong SHI ; Shuangjian QIU ; Huichuan SUN ; Qiang GAO ; Jia FAN ; Jian ZHOU
Chinese Journal of Clinical Medicine 2025;32(3):350-354
Objective To explore the application of plasma 7 microRNA (miR7) testing in the differential diagnosis of very early-stage hepatocellular carcinoma (HCC). Methods This study is a multicenter real-world study. Patients with single hepatic lesion (maximum diameter≤2 cm) who underwent plasma miR7 testing at Zhongshan Hospital, Fudan University, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Anhui Provincial Hospital, and Peking University People’s Hospital between January 2019 and December 2024 were retrospectively enrolled. Patients were divided into very early-stage HCC group and non-HCC group, and the clinical pathological characteristics of the two groups were compared. The value of plasma miR7 levels, alpha-fetoprotein (AFP), and des-gamma-carboxy prothrombin (DCP) in the differential diagnosis of very early-stage HCC was evaluated using receiver operating characteristic (ROC) curves and area under the curve (AUC). In patients with both negative AFP and DCP (AFP<20 ng/mL, DCP<40 mAU/mL), the diagnostic value of plasma miR7 for very early-stage HCC was analyzed. Results A total of 64 528 patients from 4 hospitals underwent miR7 testing, and 1 682 were finally included, of which 1 073 were diagnosed with very early-stage HCC and 609 were diagnosed with non-HCC. The positive rate of miR7 in HCC patients was significantly higher than that in non-HCC patients (67.9% vs 24.3%, P<0.001). ROC curves showed that the AUCs for miR7, AFP, and DCP in distinguishing HCC patients from the non-HCC individuals were 0.718, 0.682, and 0.642, respectively. The sensitivities were 67.85%, 43.71%, and 44.45%, and the specificities were 75.70%, 92.78%, and 83.91%, respectively. The pairwise comparison of AUCs showed that the diagnostic efficacy of plasma miR7 detection was significantly better than that of AFP or DCP (P<0.05). Although its specificity was slightly lower than AFP and DCP, the sensitivity was significantly higher. Among patients negative for both AFP and DCP, miR7 maintained an AUC of 0.728 for diagnosing very early-stage HCC, with 67.82% sensitivity and 77.73% specificity. Conclusions Plasma miR7 testing is a potential molecular marker with high sensitivity and specificity for the differential diagnosis of small hepatic nodules. In patients with very early-stage HCC lacking effective molecular markers (negative for both AFP and DCP), miR7 can serve as a novel and effective molecular marker to assist diagnosis.
8.Occurrence risk of enteral nutrition intolerance and its influencing factors in 302 elderly critically ill patients
Xiaorong SHI ; Zhang WANG ; Yan REN ; Ying XIANG
Journal of Public Health and Preventive Medicine 2025;36(4):141-144
Objective To explore the occurrence risk of enteral nutrition intolerance and analyze its influencing factors in 302 elderly critically ill patients. Methods The clinical case data of elderly critically ill patients in department of elderly cadres of the hospital were retrospectively analyzed from January 2019 to January 2024. According to the occurrence of enteral nutrition intolerance or not, they were divided into occurrence group (n=156) and non-occurrence group (n=146). The risk of nutritional intolerance in elderly critically ill patients was evaluated by feeding intolerance risk assessment form, and the influencing factors of enteral nutrition intolerance were analyzed by multivariate logistic regression analysis. Results Among the 302 elderly patients with critical illness, 53.31% (161/302) had high risk of enteral nutrition intolerance, and 51.66% (156/302) had enteral nutrition intolerance. Multivariate logistic analysis revealed that CRP level>10mg/L, APACHE-II score≥20 points, Lac≥3mmol/L and hypoalbuminemia were risk factors in elderly critically ill patients (OR=1.806, 2.977, 8.232, 3.031, P=0.011, 0.001, 0.041, 0.047), and addition of dietary fiber was a protective factor for enteral nutrition intolerance (OR=1.652, P=0.037). Conclusion The risk of enteral nutrition intolerance is high in elderly critically ill patients. Lac level, CRP level, hypoalbuminemia, and APACHE-II score of patients are independent risk factors for enteral nutrition intolerance, and addition of dietary fiber is a protective factor. It is necessary to take targeted interventions for patients according to the above factors to minimize the occurrence of enteral nutrition intolerance.
9.Research progress on influencing factors and assessment methods of pulp vitality
ZHU Xiao ; CHEN Yanqi ; QIAN Linna ; JIANG Dingzhuo ; SHI Ying ; WU Zhifang
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(8):690-698
Healthy dental pulp is essential for preserving teeth and maintaining their normal function. Vital pulp therapy (VPT) is widely used in clinical applications because it aims to preserve vital pulp and enhance the long-term survival of teeth. An accurate diagnosis of pulp vitality is a prerequisite for successful VPT. However, accurately assessing pulp viability remains challenging in clinical practice. Pulp viability is influenced by various factors, including the type of pulp exposure, caries status, periodontitis, trauma, treatment factors, patient age, and individual differences. Assessing pulp viability requires a comprehensive consideration of medical history and clinical manifestations, along with a combination of various auxiliary methods, such as pulp sensibility tests, pulp blood flow tests, imaging techniques and molecular diagnostics. In the future, the technology for assessing pulp vitality should evolve toward chairside, visualization, and precision techniques, to achieve consistency between clinical and histological diagnoses, thereby providing patients with the most effective treatment.
10.Traditional Chinese Medicine Compound Formulas in Treatment of Ulcerative Colitis by Regulating NLRP3 Inflammasome Signaling Pathway: A Review
Guanyu ZHAO ; Ruihua XIN ; Ying WANG ; Lei SHI ; Lidong DU ; Guotai WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):305-314
Ulcerative colitis (UC) is a refractory disease of the digestive system characterized by diverse etiologies, complex pathogenesis, a prolonged course, and frequent relapses. In recent years, the incidence of UC has been increasing annually, severely impairing patients' quality of life, posing a risk of malignant transformation that may threaten patients' lives, and resulting in a substantial medical burden. Traditional Chinese medicine (TCM) compound formulas, with their advantages of multi-component and multi-target actions, have become a new therapeutic option for UC. The NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is a core component of innate immunity, and its aberrant activation is closely associated with the onset and progression of UC, involving multiple processes such as inflammation and oxidative stress, and exhibiting crosstalk with pathways including nuclear factor-κB (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), and thioredoxin-interacting protein (TXNIP). At present, NLRP3 has become one of the most intensely studied hotspots in UC-related research. Although increasing studies have focused on the regulation of the NLRP3 inflammasome by TCM compound formulas for UC treatment, challenges remain due to the complex pathogenesis of UC and the compositional diversity of TCM, hindering the realization of precision therapy. In this context, by reviewing literature from the past decade, this paper summarizes the activation process of NLRP3 and its relationship with UC, and elucidates the roles and mechanisms by which TCM compound formulas regulate the NLRP3 inflammasome and related signaling pathways, with a view to providing a reference for further research into the pathogenesis of UC, TCM treatment strategies, and their mechanisms of action.


Result Analysis
Print
Save
E-mail