1.Unlocking therapeutic potential: Exploring nuclear receptors in brain cancer treatment.
Sujitha JAYAPRAKASH ; Hiu Yan LAM ; Ravichandran VISHWA ; Bandari BHARATHWAJCHETTY ; Kenneth C-H YAP ; Mohammed S ALQAHTANI ; Mohamed ABBAS ; Gautam SETHI ; Alan Prem KUMAR ; Ajaikumar B KUNNUMAKKARA
Chinese Medical Journal 2025;138(21):2722-2752
Brain cancer remains among the most lethal malignancies worldwide, with approximately 321,476 new cases and 248,305 deaths reported globally in 2022. The treatment of malignant brain tumors presents substantial clinical challenges, primarily due to their resistance to standard therapeutic approaches. Despite decades of intensive research, effective treatment strategies for brain cancer are still lacking. Nuclear receptors (NRs), a superfamily of ligand-activated transcription factors, regulate a broad range of physiological processes including metabolism, immunity, stress response, reproduction, and cellular differentiation. Increasing evidence highlights the involvement of NRs in oncogenesis, with several members demonstrating altered expression and function in brain tumors. Aberrations in NR signaling, encompassing receptors such as androgen receptors, estrogen receptors, estrogen-related receptors, glucocorticoid receptors, NR subfamily 4 group A, NR subfamily 1 group D member 2, NR subfamily 5 group A member 2, NR subfamily 2 group C member 2, liver X receptors, peroxisome-proliferator activated receptors, progesterone receptors, retinoic acid receptors, NR subfamily 2 group E member 1, thyroid hormone receptors, vitamin D receptors, and retinoid X receptors, have been implicated in promoting hallmark malignant phenotypes, including enhanced survival, proliferation, invasion, migration, metastasis, and resistance to therapy. This review aims to explore the roles of key NRs in brain cancer, with an emphasis on their prognostic significance, and to evaluate the therapeutic potential of targeting these receptors using selective agonists or antagonists.
Humans
;
Brain Neoplasms/drug therapy*
;
Receptors, Cytoplasmic and Nuclear/metabolism*
;
Animals
;
Signal Transduction/physiology*
2.pH-responsive biomimetic zeolitic imidazolate framework-based nanoparticles for co-delivery of cetuximab and siRNA in synergistic therapy of laryngeal squamous cell carcinoma.
Liyin WANG ; Milad ASHRAFIZADEH ; Gautam SETHI ; Xinjia ZHOU
Journal of Pharmaceutical Analysis 2025;15(7):101203-101203
Suboptimal treatment of laryngeal squamous cell carcinoma (LSCC) provides poor survival rate. The poor bioavailability, resistance to cetuximab (Cet), and the instability of small interfering RNA (siRNA) limit their efficacy in LSCC therapy. The present study has been aimed to develop a Cet and focal adhesion kinase (FAK) siRNA (siFAK) co-delivery nanosystem. Zeolitic imidazolate framework-8 (ZIF-8), with its large specific surface area and pH-responsive properties, is an ideal delivery carrier allowing controlled drug release in the acidic tumor microenvironment. Therefore, Cet was loaded onto ZIF-8 and encapsulated in a TU177 cell membrane (TCM) after the electrostatic adsorption of siFAK. Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), zeta potential, X-ray diffraction, and particle size analyses were deployed to characterize Cet/siFAK@ZIF-8@TCM. TU177 cells and subcutaneously transplanted tumor-bearing nude mice were used to evaluate the intracellular uptake, cytotoxicity, in vivo biocompatibility, biodistribution, biosafety, pH responsiveness, and anti-LSCC efficacy of Cet/siFAK@ZIF-8@TCM. After ZIF-8@TCM were loaded with Cet and siFAK, alterations in their physical and crystal structures, particle size, and zeta potential were observed. Meanwhile, the co-delivery system increased the loading of Cet through the electrostatic adsorption of siFAK to Cet-loaded ZIF-8. The intracellular uptake of Cet/siFAK@ZIF-8@TCM also protected siFAK from degradation, effectively decreasing the messenger RNA (mRNA) and protein expression levels of FAK in LSCC cells. The ZIF-8@TCM nanosystem for co-delivery of Cet and siFAK exhibited pH-responsiveness and tumor-targeting capabilities, thereby exerting anti-LSCC effects. Co-delivery of Cet and siFAK via the pH-responsive ZIF-8@TCM system enabled the targeted release of the chemotherapeutic and gene, in turn maximizing their anti-LSCC effect while ensuring biosafety.
3.Targeting oncogenic transcription factors for cancer therapy
Chinese Journal of Pharmacology and Toxicology 2018;32(4):250-250
Signal transducers and activators of transcription (STATs) comprise an important class of transcription factors that have been implicated in a wide variety of essential cellular functions related to proliferation, survival, and angiogenesis. Among various STAT members, STAT3 is frequently overex-pressed in tumor cells as well as tissue samples,and regulates the expression of numerous oncogenic genes controlling the growth and metastasis of tumor cells. I will briefly discuss the importance of STAT3 as a potential target for prostate cancer therapy and also provide novel insights into various classes of existing pharmacological inhibitors of this transcription factor that can be potentially devel-oped as anti-cancer drugs.

Result Analysis
Print
Save
E-mail