1.Tongtiao acupuncture-moxibustion method for 28 cases of long COVID-19 olfactory dysfunction.
Tianxin JIANG ; Qiqi YANG ; Fei LI
Chinese Acupuncture & Moxibustion 2025;45(3):331-334
OBJECTIVE:
To observe the clinical efficacy of Tongtiao acupuncture-moxibustion method for long COVID-19 olfactory dysfunction.
METHODS:
A total of 28 patients with long COVID-19 olfactory dysfunction were selected and treated with Tongtiao acupuncture-moxibustion therapy (regulating orifices, invigorating the brain, and regulating qi and blood). Acupoints included Yintang (GV24+), Baihui (GV20), Fengfu (GV16), Qihai (CV6) and bilateral Yingxiang (LI20), Fengchi (GB20), Xuehai (SP10), Zusanli (ST36). Deep needling to the periosteum of the nasal bone was performed at Yintang (EX-HN3), with warming needle moxibustion applied. Each treatment lasted 40 min, administered once daily for 6 days per week, followed by a 1-day rest, over 4 consecutive weeks. T&T olfactory test scores, TCM symptom scores, serum cortisol levels, Hamilton depression scale (HAMD) scores, and Hamilton anxiety scale (HAMA) scores were compared before and after treatment. Clinical effect was evaluated based on T&T olfactory test grading.
RESULTS:
Compared before treatment, the T&T olfactory test scores, each TCM symptom scores, HAMD scores, and HAMA scores were decreased after treatment (P<0.01, P<0.05), while serum cortisol level was increased (P<0.01). The total effective rate was 96.4% (27/28).
CONCLUSION
Tongtiao acupuncture method could effectively alleviate symptoms of long COVID-19 olfactory dysfunction, increase serum cortisol level, and relieve anxiety and depressive symptoms.
Humans
;
Moxibustion
;
Male
;
Female
;
COVID-19/therapy*
;
Acupuncture Therapy
;
Middle Aged
;
Adult
;
Acupuncture Points
;
Olfaction Disorders/virology*
;
Aged
;
SARS-CoV-2/physiology*
;
Treatment Outcome
2.Mechanism and significance of cell senescence induced by viral infection.
Yunchuang CHANG ; Xinna WU ; Lingli DENG ; Sanying WANG ; Genxiang MAO
Journal of Zhejiang University. Medical sciences 2025;54(1):70-80
Virus-induced senescence (VIS) is a significant biological phenomenon, which is associated with declining immune function, accelerating aging process and causing aging-related diseases. A variety of common viruses, including RNA viruses (such as SARS-CoV-2), DNA viruses (such as herpesviruses and hepatitis B virus), and prions can cause VIS in host cells. The primary mechanisms include abnormal activation of the cGAS-STING signaling pathway, DNA damage response, and potential correlations with the integrated stress response due to intracellular phase separation. Viral infection and cellular senescence influence each other: cellular senescence serves as a defense to restrict viral replication and transmission, while some viruses exploit cellular senescence to enhance their infectivity and replication. Understanding the mechanisms of VIS is conducive to the development of therapeutic strategies for viral infections and promotion of healthy aging. However, there is lack of research on therapeutic targets and drug development in this field so far. Although senolytics may be effective for anti-senescent cells therapy, their efficacy for VIS needs evidence from further clinical trials. This article reviews the research progress on the connection between viral infection and cellular senescence, to provide insights for the prevention and treatment of aging related diseases.
Humans
;
Cellular Senescence/physiology*
;
Virus Diseases/physiopathology*
;
Signal Transduction
;
Nucleotidyltransferases/metabolism*
;
DNA Damage
;
Virus Replication
;
COVID-19
;
Membrane Proteins/metabolism*
;
SARS-CoV-2
3.Effects of speech duration and voice volume on the respiratory aerosol particle concentration.
Tomoki TAKANO ; Yiming XIANG ; Masayuki OGATA ; Yoshihide YAMAMOTO ; Satoshi HORI ; Shin-Ichi TANABE
Environmental Health and Preventive Medicine 2025;30():14-14
BACKGROUND:
SARS-CoV-2 (COVID-19) is transmitted via infectious respiratory particles. Infectious respiratory particles are released when an infected person breathes, coughs, or speaks. Several studies have measured respiratory particle concentrations through focusing on activities such as breathing, coughing, and short speech. However, few studies have investigated the effect of speech duration.
METHODS:
This study aimed to clarify the effects of speech duration and volume on the respiratory particle concentration. Study participants were requested to speak at three voice volumes across five speech durations, generating 15 speech patterns. Participants spoke inside a clean booth where particle concentrations and voice volumes were measured and analyzed during speech.
RESULTS:
Our findings suggest that as speech duration increased, the aerosol number concentration also increased. Through focusing on individual differences, we considered there might be super-emitters who emit more aerosol particles than the average human. Two participants were identified as statistical outliers (aerosol number concentration, n = 1; mass concentration, n = 1).
CONCLUSIONS
Considering speech duration may improve our understanding of respiratory particle concentration dynamics. Two participants were identified as potential super-emitters.
Humans
;
Male
;
Speech/physiology*
;
Adult
;
Female
;
COVID-19/transmission*
;
Respiratory Aerosols and Droplets
;
Voice
;
SARS-CoV-2
;
Time Factors
;
Young Adult
;
Aerosols/analysis*
4.Pathogenicity and Transcriptomic Profiling Revealed Activation of Apoptosis and Pyroptosis in Brain of Mice Infected with the Beta Variant of SARS-CoV-2.
Han LI ; Bao Ying HUANG ; Gao Qian ZHANG ; Fei YE ; Li ZHAO ; Wei Bang HUO ; Zhong Xian ZHANG ; Wen WANG ; Wen Ling WANG ; Xiao Ling SHEN ; Chang Cheng WU ; Wen Jie TAN
Biomedical and Environmental Sciences 2025;38(9):1082-1094
OBJECTIVE:
Patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection frequently develop central nervous system damage, yet the mechanisms driving this pathology remain unclear. This study investigated the primary pathways and key factors underlying brain tissue damage induced by the SARS-CoV-2 beta variant (lineage B.1.351).
METHODS:
K18-hACE2 and C57BL/6 mice were intranasally infected with the SARS-CoV-2 beta variant. Viral replication, pathological phenotypes, and brain transcriptomes were analyzed. Gene Ontology (GO) analysis was performed to identify altered pathways. Expression changes of host genes were verified using reverse transcription-quantitative polymerase chain reaction and Western blot.
RESULTS:
Pathological alterations were observed in the lungs of both mouse strains. However, only K18-hACE2 mice exhibited elevated viral RNA loads and infectious titers in the brain at 3 days post-infection, accompanied by neuropathological injury and weight loss. GO analysis of infected K18-hACE2 brain tissue revealed significant dysregulation of genes associated with innate immunity and antiviral defense responses, including type I interferons, pro-inflammatory cytokines, Toll-like receptor signaling components, and interferon-stimulated genes. Neuroinflammation was evident, alongside activation of apoptotic and pyroptotic pathways. Furthermore, altered neural cell marker expression suggested viral-induced neuroglial activation, resulting in caspase 4 and lipocalin 2 release and disruption of neuronal molecular networks.
CONCLUSION
These findings elucidate mechanisms of neuropathogenicity associated with the SARS-CoV-2 beta variant and highlight therapeutic targets to mitigate COVID-19-related neurological dysfunction.
Animals
;
COVID-19/genetics*
;
Mice
;
Brain/metabolism*
;
Apoptosis
;
Mice, Inbred C57BL
;
SARS-CoV-2/physiology*
;
Pyroptosis
;
Gene Expression Profiling
;
Transcriptome
;
Male
;
Female
5.Does Prenatal SARS-CoV-2 Infection Exacerbate Postpartum Lower Urinary Tract Symptoms? A Multicenter Retrospective Cohort Study.
Yu Han LYU ; Min LI ; Hui Qing YAO ; Tian Zi GAI ; Lin LIANG ; Su PAN ; Ping Ping LI ; Ya Xin LIANG ; Yue YU ; Xiao Mei WU ; Min LI
Biomedical and Environmental Sciences 2025;38(9):1095-1104
OBJECTIVE:
Coronavirus disease 2019 (COVID-19) can result in fatigue and post-exertional malaise; however, whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection exacerbates lower urinary tract symptoms (LUTS) is unclear. This study investigated the association between prenatal SARS-CoV-2 infection and postpartum LUTS.
METHODS:
A multicenter, retrospective cohort study was conducted at two tertiary hospitals in China from November 1, 2022, to November 1, 2023. Participants were classified into infected and uninfected groups based on SARS-CoV-2 antigen results. LUTS prevalence and severity were assessed using self-reported symptoms and the Incontinence Impact Questionnaire-Short Form (IIQ-7). Pelvic floor muscle activity was measured using electromyography following the Glazer protocol. Group comparisons were performed to evaluate the association of SARS-CoV-2 infection with LUTS and electromyography parameters, with stratified analyses conducted using SPSS version 26.0.
RESULTS:
Among 3,652 participants (681 infected, 2,971 uninfected), no significant differences in LUTS prevalence or IIQ-7 scores were observed. However, SARS-CoV-2 infection was an independent factor influencing the electromyographic activity of the pelvic floor muscles (mean tonic contraction amplitudes), regardless of delivery mode ( P = 0.001).
CONCLUSION
Prenatal SARS-CoV-2 infection was not significantly associated with an increased risk of postpartum LUTS but independently altered pelvic floor muscle electromyographic activity, suggesting potential neuromuscular effects.
Humans
;
Female
;
COVID-19/epidemiology*
;
Retrospective Studies
;
Adult
;
Pregnancy
;
Lower Urinary Tract Symptoms/virology*
;
Postpartum Period
;
Pregnancy Complications, Infectious/virology*
;
China/epidemiology*
;
Electromyography
;
SARS-CoV-2/physiology*
;
Pelvic Floor/physiopathology*
;
Prevalence
6.Semen parameters in men recovered from COVID-19.
Tong-Hang GUO ; Mei-Ying SANG ; Shun BAI ; Hui MA ; Yang-Yang WAN ; Xiao-Hua JIANG ; Yuan-Wei ZHANG ; Bo XU ; Hong CHEN ; Xue-Ying ZHENG ; Si-Hui LUO ; Xue-Feng XIE ; Chen-Jia GONG ; Jian-Ping WENG ; Qing-Hua SHI
Asian Journal of Andrology 2021;23(5):479-483
The novel coronavirus disease (COVID-19) pandemic is emerging as a global health threat and shows a higher risk for men than women. Thus far, the studies on andrological consequences of COVID-19 are limited. To ascertain the consequences of COVID-19 on sperm parameters after recovery, we recruited 41 reproductive-aged male patients who had recovered from COVID-19, and analyzed their semen parameters and serum sex hormones at a median time of 56 days after hospital discharge. For longitudinal analysis, a second sampling was obtained from 22 of the 41 patients after a median time interval of 29 days from first sampling. Compared with controls who had not suffered from COVID-19, the total sperm count, sperm concentration, and percentages of motile and progressively motile spermatozoa in the patients were significantly lower at first sampling, while sperm vitality and morphology were not affected. The total sperm count, sperm concentration, and number of motile spermatozoa per ejaculate were significantly increased and the percentage of morphologically abnormal sperm was reduced at the second sampling compared with those at first in the 22 patients examined. Though there were higher prolactin and lower progesterone levels in patients at first sampling than those in controls, no significant alterations were detected for any sex hormones examined over time following COVID-19 recovery in the 22 patients. Although it should be interpreted carefully, these findings indicate an adverse but potentially reversible consequence of COVID-19 on sperm quality.
Adult
;
Asthenozoospermia/virology*
;
COVID-19/physiopathology*
;
China
;
Gonadal Steroid Hormones/blood*
;
Humans
;
Male
;
Progesterone/blood*
;
Prolactin/blood*
;
SARS-CoV-2
;
Semen/physiology*
;
Semen Analysis
;
Sperm Count
;
Sperm Motility
;
Spermatozoa/physiology*
;
Time Factors
7.Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection.
Rongjuan PEI ; Jianqi FENG ; Yecheng ZHANG ; Hao SUN ; Lian LI ; Xuejie YANG ; Jiangping HE ; Shuqi XIAO ; Jin XIONG ; Ying LIN ; Kun WEN ; Hongwei ZHOU ; Jiekai CHEN ; Zhili RONG ; Xinwen CHEN
Protein & Cell 2021;12(9):717-733
The coronavirus disease 2019 (COVID-19) pandemic is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is spread primary via respiratory droplets and infects the lungs. Currently widely used cell lines and animals are unable to accurately mimic human physiological conditions because of the abnormal status of cell lines (transformed or cancer cells) and species differences between animals and humans. Organoids are stem cell-derived self-organized three-dimensional culture in vitro and model the physiological conditions of natural organs. Here we showed that SARS-CoV-2 infected and extensively replicated in human embryonic stem cells (hESCs)-derived lung organoids, including airway and alveolar organoids which covered the complete infection and spread route for SARS-CoV-2 within lungs. The infected cells were ciliated, club, and alveolar type 2 (AT2) cells, which were sequentially located from the proximal to the distal airway and terminal alveoli, respectively. Additionally, RNA-seq revealed early cell response to virus infection including an unexpected downregulation of the metabolic processes, especially lipid metabolism, in addition to the well-known upregulation of immune response. Further, Remdesivir and a human neutralizing antibody potently inhibited SARS-CoV-2 replication in lung organoids. Therefore, human lung organoids can serve as a pathophysiological model to investigate the underlying mechanism of SARS-CoV-2 infection and to discover and test therapeutic drugs for COVID-19.
Adenosine Monophosphate/therapeutic use*
;
Alanine/therapeutic use*
;
Alveolar Epithelial Cells/virology*
;
Antibodies, Neutralizing/therapeutic use*
;
COVID-19/virology*
;
Down-Regulation
;
Drug Discovery
;
Human Embryonic Stem Cells/metabolism*
;
Humans
;
Immunity
;
Lipid Metabolism
;
Lung/virology*
;
RNA, Viral/metabolism*
;
SARS-CoV-2/physiology*
;
Virus Replication/drug effects*
9.Chinese Medicine in Fighting against Covid-19: Role and Inspiration.
Chinese journal of integrative medicine 2021;27(1):3-6
Covid-19 pandemic has caused hundreds of thousands deaths and millions of infections and continued spreading violently. Although researchers are racing to find or develop effective drugs or vaccines, no drugs from modern medical system have been proven effective and the high mutant rates of the virus may lead it resistant to whatever drugs or vaccines developed following modern drug development procedure. Current evidence has demonstrated impressive healing effects of several Chinese medicines (CMs) for Covid-19, which urges us to reflect on the role of CM in the era of modern medicine. Undoubtedly, CM could be promising resources for developing drug candidates for the treatment of Covid-19 in a way similar to the development of artemisinin. But the theory that builds CM, like the emphasis of driving away exogenous pathogen (virus, etc.) by restoring self-healing capacity rather than killing the pathogen directly from the inside and the 'black-box' mode of diagnosing and treating patients, is as important, yet often ignored, an treasure as CM herbs and should be incorporated into modern medicine for future advancement and innovation of medical science.
Antiviral Agents/therapeutic use*
;
COVID-19/therapy*
;
Disease Outbreaks
;
Drug Development/standards*
;
Drug Resistance, Viral/genetics*
;
Drug Therapy, Combination
;
Drugs, Chinese Herbal/therapeutic use*
;
Humans
;
Medicine, Chinese Traditional/trends*
;
Mutation Rate
;
Pandemics
;
Phytotherapy/methods*
;
SARS-CoV-2/physiology*
10.ADP-ribosylhydrolases: from DNA damage repair to COVID-19.
Lily YU ; Xiuhua LIU ; Xiaochun YU
Journal of Zhejiang University. Science. B 2021;22(1):21-30
Adenosine diphosphate (ADP)-ribosylation is a unique post-translational modification that regulates many biological processes, such as DNA damage repair. During DNA repair, ADP-ribosylation needs to be reversed by ADP-ribosylhydrolases. A group of ADP-ribosylhydrolases have a catalytic domain, namely the macrodomain, which is conserved in evolution from prokaryotes to humans. Not all macrodomains remove ADP-ribosylation. One set of macrodomains loses enzymatic activity and only binds to ADP-ribose (ADPR). Here, we summarize the biological functions of these macrodomains in DNA damage repair and compare the structure of enzymatically active and inactive macrodomains. Moreover, small molecular inhibitors have been developed that target macrodomains to suppress DNA damage repair and tumor growth. Macrodomain proteins are also expressed in pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, these domains may not be directly involved in DNA damage repair in the hosts or pathogens. Instead, they play key roles in pathogen replication. Thus, by targeting macrodomains it may be possible to treat pathogen-induced diseases, such as coronavirus disease 2019 (COVID-19).
ADP-Ribosylation
;
COVID-19/metabolism*
;
DNA Repair/physiology*
;
Evolution, Molecular
;
Humans
;
Models, Biological
;
Models, Molecular
;
N-Glycosyl Hydrolases/metabolism*
;
Poly(ADP-ribose) Polymerases/metabolism*
;
Protein Domains
;
SARS-CoV-2/pathogenicity*

Result Analysis
Print
Save
E-mail